地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (7): 1221-1230.doi: 10.12082/dqxxkx.2021.200367
收稿日期:
2020-07-13
修回日期:
2020-09-16
出版日期:
2021-07-25
发布日期:
2021-09-25
通讯作者:
* 施润和(1979— ),男,上海人,博士,副教授,研究方向为环境遥感。E-mail: rhshi@geo.ecnu.edu.cn作者简介:
冯子钰(1996— ),女,四川绵阳人,硕士生,研究方向为环境遥感。E-mail: fzy_8978@163.com
基金资助:
FENG Ziyu1,2,3(), SHI Runhe1,2,3,4,5,*(
)
Received:
2020-07-13
Revised:
2020-09-16
Online:
2021-07-25
Published:
2021-09-25
Contact:
SHI Runhe
Supported by:
摘要:
PM2.5是威胁人体健康的主要大气污染物之一。大量研究关注近地面PM2.5浓度的监测及其时空分布,但目前针对PM2.5排放及其与近地面浓度之间的关联研究较为缺乏。本文通过2000—2014年近地面PM2.5浓度格网数据和PM2.5排放格网数据,采用长时间序列分析法对PM2.5浓度和PM2.5排放从定性和定量两个角度进行时空变化趋势对比研究,并进一步结合标准差椭圆法和趋势分析法,分析了我国近地面PM2.5浓度和PM2.5排放的时空变化特征及其关联。结果表明,从总体时间序列趋势上,近地面PM2.5浓度和PM2.5排放之间在空间分布上基本呈现一致性,集中在胡焕庸线以东的人口密集区,但在时间上,PM2.5浓度和排放之间存在动态变化时间差。且PM2.5浓度的变化更为明显,2000—2007年高于35 μg/m3的国土面积占比增加了14.26%,2007—2014年减少了2.84%;从标准差椭圆分析来看,PM2.5浓度椭圆和排放椭圆在覆盖面积和方位角上与人口和经济分布吻合,但前者面积更大,长轴更接近于东西方向,二者存在约17°差异,而两类椭圆的中心位置随时间变化呈现出较一致的轨迹特征并呈现出滞后特点;此外,受大气扩散、点源排放等因素影响,PM2.5浓度变化趋势与排放变化趋势在胡焕庸线以东并不完全一致,部分区域排放呈降低趋势而浓度则反而呈升高趋势。因此,从全国层面来看,减排政策对浓度降低在时间上虽存在滞后,但边际效益显著,并已显露成效;而从局地来看,受地形、气象条件和大气化学过程等复杂影响,二者的变化在空间上仍会存在差异,有待进一步深入研究;从防控措施来看,在继续加强落实本地减排政策的同时,应考虑污染物的扩散迁移规律,加强联防联控,有效改善空气质量。
冯子钰, 施润和. 中国近地面PM2.5浓度与排放的时空分布及其关联分析[J]. 地球信息科学学报, 2021, 23(7): 1221-1230.DOI:10.12082/dqxxkx.2021.200367
FENG Ziyu, SHI Runhe. Spatio-temporal Features and the Association of Ground-level PM2.5 Concentration and Its Emission in China[J]. Journal of Geo-information Science, 2021, 23(7): 1221-1230.DOI:10.12082/dqxxkx.2021.200367
表2
PM2.5近地面浓度标准差椭圆主要参数
年份 | 周长/km | 面积/104 km2 | 圆心X坐标/° | 圆心Y坐标/° | 短轴/km | 长轴/km | 方位角/° |
---|---|---|---|---|---|---|---|
2000 | 83.61 | 507.80 | 111.09 | 35.43 | 991 | 1631 | 79.34 |
2002 | 83.84 | 502.36 | 110.60 | 35.02 | 964 | 1658 | 82.30 |
2004 | 83.22 | 502.63 | 110.62 | 34.38 | 985 | 1625 | 82.54 |
2006 | 80.73 | 472.52 | 110.97 | 34.71 | 953 | 1578 | 81.00 |
2008 | 82.81 | 498.74 | 111.21 | 34.72 | 984 | 1614 | 79.53 |
2010 | 81.88 | 482.50 | 111.27 | 34.81 | 954 | 1610 | 79.45 |
2012 | 82.05 | 490.03 | 110.92 | 34.54 | 976 | 1598 | 79.23 |
2014 | 82.57 | 494.23 | 111.39 | 34.73 | 975 | 1614 | 77.81 |
表3
PM2.5排放标准差椭圆主要参数
年份 | 周长/km | 面积/104 km2 | 圆心X坐标/° | 圆心Y坐标/° | 短轴/km | 长轴/km | 方位角/° |
---|---|---|---|---|---|---|---|
2000 | 65.90 | 324.25 | 113.28 | 34.33 | 826 | 1250 | 63.30 |
2002 | 65.05 | 316.31 | 113.20 | 34.22 | 817 | 1233 | 66.33 |
2004 | 64.98 | 315.32 | 113.51 | 34.22 | 814 | 1233 | 62.12 |
2006 | 62.71 | 295.04 | 113.72 | 34.34 | 794 | 1183 | 61.13 |
2008 | 63.12 | 300.15 | 113.73 | 34.22 | 806 | 1185 | 62.75 |
2010 | 64.54 | 312.21 | 113.39 | 34.14 | 815 | 1219 | 65.24 |
2012 | 65.16 | 318.28 | 113.37 | 34.28 | 823 | 1231 | 66.73 |
2014 | 66.01 | 325.92 | 113.52 | 34.49 | 830 | 1250 | 65.95 |
[1] |
Wang S, Zhou C, Wang Z, et al. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China[J]. Journal of Cleaner Production, 2017, 142(4):1800-1809.
doi: 10.1016/j.jclepro.2016.11.104 |
[2] |
Zhang D, Bai K, Zhou Y, et al. Estimating ground-level concentrations of multiple air pollutants and their health impacts in the Huaihe River Basin in China[J]. International Journal of Environmental Research and Public Health, 2019, 16(4):579.
doi: 10.3390/ijerph16040579 |
[3] | 赵文昌. 空气污染对城市居民的健康风险与经济损失的研究[D]. 上海:上海交通大学, 2012. |
[ Zhao W C. Health risks and economic loss on urban citizens caused by air pollution[D]. Shanghai: Shanghai Jiao Tong University, 2012. ] | |
[4] |
Maji K J, Dikshit A K, Arora M, et al. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020[J]. Science of The Total Environment, 2018, 612:683-693.
doi: 10.1016/j.scitotenv.2017.08.254 |
[5] |
Song C, He J, Wu L, et al. Health burden attributable to ambient PM2.5 in China[J]. Environmental Pollution, 2017, 223:575-586.
doi: 10.1016/j.envpol.2017.01.060 |
[6] |
Song Y, Wang X, Maher B A, et al. The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China[J]. Journal of Cleaner Production, 2016, 112:1312-1318.
doi: 10.1016/j.jclepro.2015.05.006 |
[7] |
Li J, Liu H, Lv Z, et al. Estimation of PM2.5 mortality burden in China with new exposure estimation and local concentration-response function[J]. Environmental Pollution, 2018, 243:1710-1718.
doi: 10.1016/j.envpol.2018.09.089 |
[8] | Han X, Liu Y, Gao H, et al. Forecasting PM2.5 induced male lung cancer morbidity in China using satellite retrieved PM2.5 and spatial analysis.[J]. Science of The Total Environment, 2017, 607(27):1009-1017. |
[9] |
Bai K, Ma M, Chang N B, et al. Spatiotemporal trend analysis for fine particulate matter concentrations in China using high-resolution satellite-derived and ground-measured PM2.5 data[J]. Journal of Environmental Management, 2019, 233:530-542.
doi: 10.1016/j.jenvman.2018.12.071 |
[10] |
Ma Z, Hu X, Sayer A M, et al. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004-2013[J]. Environmental Health Perspectives, 2016, 124(2):184-192.
doi: 10.1289/ehp.1409481 |
[11] |
He Q, Geng F, Li C, et al. Long-term characteristics of satellite-based PM2.5 over East China[J]. The Science of the Total Environment, 2018, 612:1417-1423.
doi: 10.1016/j.scitotenv.2017.09.027 |
[12] |
Zhou L, Zhou C H, Yang F, et al. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015[J]. Journal of Geographical Sciences, 2019, 29(2):253-270.
doi: 10.1007/s11442-019-1595-0 |
[13] | 周云云, 张德英, 施润和. 多种气象要素及其变化对AOD与PM2.5关联模型的影响研究[J]. 环境科学学报, 2019, 39(1):204-211. |
[ Zhou Y Y, Zhang D Y, Shi R H. Influence of multiple meteorological parameters and their variations on the association model of AOD and PM2.5[J]. Acta Scientiae Circumstantiae, 2019, 39(1):204-211. ] | |
[14] |
Yang Q, Yuan Q, Yue L, et al. Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions in China in 2015 by using modified geographically weighted regression[J]. Environmental Pollution, 2020, 262:114257.
doi: 10.1016/j.envpol.2020.114257 |
[15] |
Peng J, Chen S, Lu H, et al. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011[J]. Remote Sensing of Environment, 2016, 174:109-121.
doi: 10.1016/j.rse.2015.12.008 |
[16] |
Shi Y, Matsunaga T, Yamaguchi Y, et al. Long-term trends and spatial patterns of satellite-retrieved PM2.5 concentrations in South and Southeast Asia from 1999 to 2014[J]. Science of the Total Environment, 2018, 615:177-186.
doi: 10.1016/j.scitotenv.2017.09.241 |
[17] |
Cao S, Zhao W, Guan H, et al. Comparison of remotely sensed PM2.5 concentrations between developed and developing countries: Results from the US, Europe, China, and India[J]. Journal of Cleaner Production, 2018, 182:672-681.
doi: 10.1016/j.jclepro.2018.02.096 |
[18] |
Liu S, Zhang Z, Wang Y, et al. PM2.5 emission characteristics of coal-fired power plants in Beijing-Tianjin-Hebei region, China[J]. Atmospheric Pollution Research, 2019, 10(3):954-959.
doi: 10.1016/j.apr.2019.01.003 |
[19] |
Zhao Y, Chen C, Zhao B, et al. Emission characteristics of PM2.5-bound chemicals from residential Chinese cooking[J]. Building and Environment, 2019, 149:623-629.
doi: 10.1016/j.buildenv.2018.12.060 |
[20] | 王艳, 郝炜伟, 程轲, 等. 城市生活垃圾露天焚烧PM2.5及其组分排放特征[J]. 环境科学, 2018, 39(8):3518-3523. |
[ Wang Y, Hao W W, Cheng K, et al. Emission characteristics and chemical components of PM2.5 from open burning of municipal solid waste [J]. Chinese Journal of Environmental Science, 2018, 39(8):3518-3523. ] | |
[21] | 杜小申, 燕丽, 贺晋瑜, 等. 安阳市典型工业源PM2.5排放特征及减排潜力估算[J]. 环境科学, 2019, 40(5):2043-2051. |
[ Du X S, Yan L, He J Y, et al. PM2.5 emission characteristics and estimation of emission reduction potential from typical industrial sources in Anyang [J]. Chinese Journal of Environmental Science, 2019, 40(5):2043-2051. ] | |
[22] | 闫东杰, 丁毅飞, 玉亚, 等. 西安市人为源一次PM2.5排放清单及减排潜力研究[J]. 环境科学研究, 2019, 32(5):813-820. |
[ Yan D J, Ding Y F, Yu Y, et al. Inventory and reduction potential of anthropogenic PM2.5 emission in Xi'an City [J]. Research of Environmental Sciences, 2019, 32(5):813-820. ] | |
[23] | 吴一鸣, 王乙斐, 周怡静, 等. 1995—2015年中国风蚀扬尘TSP、PM10和PM2.5排放清单及未来趋势预测[J]. 中国环境科学, 2019, 39(3):908-914. |
[ Wu Y M, Wang Y F, Zhou Y J, et al. An inventory of atmospheric wind erosion dust emissions of China, 1995-2015[J]. China Environmental Science, 2019, 39(3):908-914. ] | |
[24] |
Li R, Chen W, Xiu A, et al. A comprehensive inventory of agricultural atmospheric particulate matters (PM10 and PM2.5) and gaseous pollutants (VOCs, SO2, NH3, CO, NOx and HC) emissions in China[J]. Ecological Indicators, 2019, 107:105609.
doi: 10.1016/j.ecolind.2019.105609 |
[25] |
Liu S, Hua S, Wang K, et al. Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis[J]. The Science of the Total Environment, 2018, 624:396-406.
doi: 10.1016/j.scitotenv.2017.12.102 |
[26] | 卢德彬, 毛婉柳, 杨东阳, 等. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, 2019, 28(3):651-660. |
[ Lu D B, Mao W L, Yang D Y, et al. Analysis on the trend and influencing factors of PM2.5 in China based on multi-source remote sensing data [J]. Resources and Environment in the Yangtza Basin, 2019, 28(3):651-660. ] | |
[27] | 周曙东, 欧阳纬清, 葛继红. 京津冀PM2.5的主要影响因素及内在关系研究[J]. 中国人口资源与环境, 2017, 27(4):102-109. |
[ Zhou S D, Ouyang W Q, Ge J H. Study on the main influencing factors and their intrinsic relations of PM2.5 in Beijing-Tianjin-Hebei [J]. China Polulation Resources and Environment, 2017, 27(4):102-109. ] | |
[28] |
Li Y, Cui Y, Cai B, et al. Spatial characteristics of CO2 emissions and PM2.5 concentrations in China based on gridded data[J]. Applied Energy, 2020, 266:114852.
doi: 10.1016/j.apenergy.2020.114852 |
[29] |
Van Donkelaar A, Martin R V, Brauer M, et al. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter[J]. Environmental Health Perspectives, 2015, 123:135-143.
doi: 10.1289/ehp.1408646 |
[30] |
van Donkelaar A, Martin R V, Brauer M, et al. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors[J]. Environmental Science & Technology, 2016, 50(7):3762-3772.
doi: 10.1021/acs.est.5b05833 |
[31] |
Huang Y, Shen H Z, Chen H, et al. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources[J]. Environmental Science & Technology, 2014, 48(23):13834-13843.
doi: 10.1021/es503696k |
[32] |
Der Werf G R, Randerson J T, Giglio L, et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)[J]. Atmospheric Chemistry and Physics, 2010, 10(23):11707-11735.
doi: 10.5194/acp-10-11707-2010 |
[33] |
Chen H, Huang Y, Shen H, et al. Modeling temporal variations in global residential energy consumption and pollutant emissions[J]. Applied Energy, 2016, 184:820-829.
doi: 10.1016/j.apenergy.2015.10.185 |
[1] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[2] | 张宇峥, 鲁岩, 陈晓键. 实体-信息与场景-符号视角下的奶茶消费空间分布特征及影响因素[J]. 地球信息科学学报, 2023, 25(4): 823-837. |
[3] | 巫磊, 吴文挺. GEE平台下结合滤波算法和植被物候特征的互花米草遥感提取最优时间窗口确定[J]. 地球信息科学学报, 2023, 25(3): 606-624. |
[4] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[5] | 周温存, 刘正佳, 王坤, 邹时林, 钟会民, 陈芳鑫. 北方农牧交错区干旱特征变化及其对植被总初级生产力的影响[J]. 地球信息科学学报, 2023, 25(2): 421-437. |
[6] | 黎煜昭, 刘启亮, 邓敏, 徐锐, 王茂洋, 杨海南. 基于物理约束GRU神经网络的河流水质预测模型[J]. 地球信息科学学报, 2023, 25(1): 102-114. |
[7] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[8] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[9] | 郭春华, 朱秀芳, 张世喆, 唐明秀, 徐昆. 基于CMIP6的中国未来高温危险性变化评估[J]. 地球信息科学学报, 2022, 24(7): 1391-1405. |
[10] | 耿佳辰, 沈石, 程昌秀. “十三五”时期黄河流域PM2.5时空分布规律及多尺度社会经济影响机制分析[J]. 地球信息科学学报, 2022, 24(6): 1163-1175. |
[11] | 杨泽航, 王文, 鲍健雄. 融合多源遥感数据的黑河中游地区生长季早期作物识别[J]. 地球信息科学学报, 2022, 24(5): 996-1008. |
[12] | 赵迪, 陈鹏, 李海成, 苗红斌. 2005—2018年北京市外来人口迁移特征与影响因素分析[J]. 地球信息科学学报, 2022, 24(4): 698-710. |
[13] | 詹琪琪, 赵伟, 杨梦娇, 付浩, 李昕娟, 熊东红. 雅鲁藏布江中部流域土地沙化遥感识别[J]. 地球信息科学学报, 2022, 24(2): 391-404. |
[14] | 代文, 陈凯, 王春, 李敏, 陶宇. 顾及DEM误差空间自相关的地形变化检测方法[J]. 地球信息科学学报, 2022, 24(12): 2297-2308. |
[15] | 秦昆, 喻雪松, 周扬, 张凯, 刘东海, 王其新, 贾涛, 肖锐, 卢宾宾, 许刚, 余洋, 孟庆祥. 全球尺度地理多元流的网络化挖掘及关联分析研究[J]. 地球信息科学学报, 2022, 24(10): 1911-1924. |
|