地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (1): 124-133.doi: 10.12082/dqxxkx.2021.200426
• 专栏:"全空间信息建模分析方法与应用研究" • 上一篇 下一篇
张正方1,2(), 闫振军1,2, 王增杰1,2, 傅蓉1,2, 罗文1,2,3,*(
), 俞肇元1,2,3
收稿日期:
2020-07-31
修回日期:
2020-12-25
出版日期:
2021-01-25
发布日期:
2021-03-25
通讯作者:
罗文
作者简介:
张正方(1995— ),男,河南安阳人,硕士生,主要从事地理建模与分析方面研究。E-mail: 基金资助:
ZHANG Zhengfang1,2(), YAN Zhenjun1,2, WANG Zengjie1,2, FU Rong1,2, LUO Wen1,2,3,*(
), YU Zhaoyuan1,2,3
Received:
2020-07-31
Revised:
2020-12-25
Online:
2021-01-25
Published:
2021-03-25
Contact:
LUO Wen
Supported by:
摘要:
多粒度时空对象具有多粒度、多类型、多形态、多参照系、多元关联、多维动态、多能自主特点,可用于直接描述从微观到宏观的现实世界。基于时空对象建模理论构建多尺度地理对象耦合演化的集成表达是多粒度时空对象模型支撑地理分析与建模的关键。本文基于多粒度时空对象建模理论,在概率图和条件概率表的基础上发展了一种基于Bayes网络的地理过程演化表达和建模方法。该方法将多粒度时空对象作为Bayes网络节点,根据多粒度时空对象间的关联关系构建Bayes网络,利用Bayes概率表达多粒度时空对象间关联关系的作用强度,并通过更新算子和概率图模型描述要素特征状态的动态变化。基于此方法,选取新安江模型,进行多粒度时空对象地理过程建模和模拟实验。采用呈村1989—1995年水文数据为训练数据,1996年水文数据为模拟数据,通过降水面、蒸发面、产流面和汇流面构造Bayes网络并模拟产流量和汇流量状态;实验结果表明本文方法不仅可以对水文过程进行演化建模,并且可以较好地模拟水文过程中的产流量和汇流量变化,正确率达97.5%和95.9%。
张正方, 闫振军, 王增杰, 傅蓉, 罗文, 俞肇元. 基于Bayes网络的多粒度时空对象地理过程演化建模——以新安江模型为例[J]. 地球信息科学学报, 2021, 23(1): 124-133.DOI:10.12082/dqxxkx.2021.200426
ZHANG Zhengfang, YAN Zhenjun, WANG Zengjie, FU Rong, LUO Wen, YU Zhaoyuan. Modeling of Geographical Process Evolution of Spatio-temporal Objects of Multi-granularity based on Bayesian Network: A Case Study of the Xin'an Jiang Model[J]. Journal of Geo-information Science, 2021, 23(1): 124-133.DOI:10.12082/dqxxkx.2021.200426
表1
水文模型变量状态分级"
状态 | Y/mm | Z/mm | L/mm | T/(m3/s) | |
---|---|---|---|---|---|
三类分级 | 一级 | <16.1 | <1.5 | <14.3 | <4.3 |
二级 | 16.1~63.8 | 1.5~3.4 | 14.3~62.6 | 4.3~19.2 | |
三级 | >63.8 | >3.4 | >62.6 | >19.2 | |
五类分级 | 一级 | <5.7 | <0.8 | <5.4 | <1.3 |
二级 | 5.7~18.8 | 0.8~1.6 | 5.4~18.2 | 1.3~5.4 | |
三级 | 18.8~37.7 | 1.6~2.8 | 18.2~40.5 | 5.4~13.9 | |
四级 | 37.7~68 | 2.8~4.3 | 40.5~81.9 | 13.9~31.9 | |
五级 | >68 | >4.3 | >81.9 | >31.9 | |
七类分级 | 一级 | <3.8 | <0.5 | <3.3 | <0.6 |
二级 | 3.8~12.0 | 0.5~1.1 | 3.3~10.7 | 0.6~2.0 | |
三级 | 12.0~23.7 | 1.1~1.7 | 10.7~21.7 | 2.0~4.2 | |
四级 | 23.7~41.2 | 1.7~2.5 | 21.7~38.2 | 4.2~7.5 | |
五级 | 41.2~68.0 | 2.5~3.6 | 38.2~65.7 | 7.5~13.9 | |
六级 | 68.0~120.6 | 3.6~4.9 | 65.7~113.9 | 13.9~31.9 | |
七级 | >120.6 | >4.9 | >113.9 | >31.9 |
[1] | 华一新, 周成虎 . 面向全空间信息系统的多粒度时空对象数据模型描述框架[J]. 地球信息科学学报, 2017,19(9):1-4. |
[ Hua Y X, Zhou C H , et al. Description frame of data model of multi-granularity spatio-temporal object for Pan-spatial Information System[J]. Journal of Geo-information Science, 2017,19(9):1-4.] | |
[2] | 王健健, 王艳楠, 周良辰 , 等. 多粒度时空对象关联关系的分类体系与表达模型[J]. 地球信息科学学报, 2017,19(9):1164-1170. |
[ Wang J J, Wang Y N, Zhou L C , et al. The classification system and expression model of the relationship of spatio-temporal object of multi-granularity[J]. Journal of Geo-information Science, 2017,19(9):1164-1170.] | |
[3] | 华一新 . 全空间信息系统的核心问题和关键技术[J]. 测绘科学技术学报, 2016,33(4):331-335. |
[ Hua Y X . The core problems and key technologies of the whole space information system[J]. Journal of Geomatics Science and Technology, 2016,33(4):331-335.] | |
[4] | 萧声隽, 宗真, 项丽燕 , 等. 多粒度时空对象空间关系的统一表达与计算[J]. 地球信息科学学报, 2017,19(9):1178-1184. |
[ Xiao S J, Zong Z, Xiang L Y , et al. The unified expression and calculation of spatial relationships of spatio-temporal object of multi-granularity[J]. Journal of Geo-information Science, 2017,19(9):1178-1184.] | |
[5] | Chi Y X, Li R J, Zhao S L , et al. Measuring multi-spatiotemporal scale tourist destination popularity based on text granular computing[J]. Plos One, 2020,15(4):1-33. |
[6] | 闾国年, 袁林旺, 俞肇元 . 地理学视角下测绘地理信息再透视[J]. 测绘学报, 2017,46(10):1549-1556. |
[ Lv G N, Yuan L W, Yu Z Y . Surveying and mapping geographical information from the perspective of geography[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1549-1556.] | |
[7] | Bilichenko I N, Sedykh S A . Spatio-temporal organization of geosystems of the central part of Barguzinskii range[J]. IOP Conference Series: Earth and Environmental Science, 2019,381(1): 012013(7). |
[8] | Gebbert S, Pebesma E . The GRASS GIS temporal framework[J]. International Journal of Geographical Information Systems, 2017,31(7-8):1273-1292. |
[9] | Cao Y, Huang Y, Chen J , et al. Geographic process modeling based on geographic ontology[J]. Open Geosciences, 2018,10(1):782-796 |
[10] | Kneis D . A lightweight framework for rapid development of object-based hydrological model engines[J]. Environmental Modelling & Software, 2015,2(68):110-121. |
[11] | Lü G N, Batty M, Strobl J , et al. Reflections and speculations on the progress in Geographic Information Systems (GIS): A geographic perspective[J]. International Journal of Geographical Information Science, 2018,33(3):1-22. |
[12] | Xie J, Xue C . A top-down hierarchical spatio-temporal process description method and its data organization[M]. International Symposium on Spatial Analysis, Spatial-Temporal Data Modeling, and Data Mining, 2009(7492):74922P-1-10. |
[13] | Xue C, Zhou C, Fenzhen S U , et al. Research on process-oriented spatio-temporal data model[J]. Acta Geodaetica Et Cartographica Sinica, 2010,39(1):95-101. |
[14] | Raper J, Livingstone D . Development of a geomorphological spatial model using object-oriented design[J]. International Journal of Geographical Information Systems, 1995,9(4):359-383. |
[15] | Taylor P, Grenon P . SNAP and SPAN: Towards dynamic spatial ontology[J]. Cognition, 2009,1(907681677):69-103. |
[16] | Worboys, M, Hornsby, K . From objects to events: GEM, the geospatial event model. In: Egenhofer, M, Freksa, C, Miller, H (Eds). Proceeding of GIScience 2004: Lecture Notes in Computer Science, vol. 3234, Springer: Berlin, 2004: 327-343. |
[17] | Galton A, Worboys M . Processes and events in dynamic geo-networks[C]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2005,3799LNCS:45-59. |
[18] | Xie J, Xue C . A top-down hierarchical spatio-temporal process description method and its data organization[M]. Proceedings of International Society for Optical Engineering, 2009,10:7492. |
[19] | Xue C, Zhou C, Fenzhen S U , et al. Research on process-oriented spatio-temporal data model[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(1):95-101. |
[20] | 李冬双, 刘袁, 石格格 , 等. 基于时变网络的多粒度时空对象关系演化过程表达与建模[J]. 地球信息科学学报, 2017,19(9):1171-1177. |
[ Li D S, Liu Y, Shi G G , et al. The expression and modeling of relationship evolution of spatio-temporal objects of multi-granularity based on time-dependent network[J]. Journal of Geo-information Science, 2017,19(9):1171-1177.] | |
[21] | Paprotny D, Oswaldo M N . Estimating extreme river discharges in Europe through a Bayesian network[J]. Hydrology and Earth System Sciences Discussions, 2016: 1-33. |
[22] | Yae S J, Muhammad A, Jiyoung Y , et al. A Bayesian Network-Based Probabilistic Framework for Drought Forecasting and Outlook[J]. Advances in Meteorology, 2016,(2016-3-10), 2016: 1-10. |
[23] |
Pan Z, Lu W, Fan Y , et al. Identification of groundwater contamination sources and hydraulic parameters based on bayesian regularization deep neural network[J]. Environmental Science and Pollution Research, 2021: 1-13.
pmid: 12638740 |
[24] |
Fasaee M A K, Berglund E, Pieper K J , et al. Developing a framework for classifying water lead levels at private drinking water systems: A Bayesian Belief Network approach[J]. Water Research, 2021,189:116641.
doi: 10.1016/j.watres.2020.116641 pmid: 33271412 |
[25] | Molina J, Santiago Z, Pablo RG , et al. Innovative analysis of runoff temporal behavior through bayesian networks[J]. Water, 2016,8(11):484-489. |
[26] | 董洁平, 李致家, 戴健男 . 基于SCE-UA算法的新安江模型参数优化及应用[J]. 河海大学学报(自然科学版), 2012,40(5):485-490. |
[ Dong J P, Li Z J, Dai J N . Application of SCE-UA algorithm to optimization of Xin' anjiang model parameters[J]. Journal of Hohai University(Natural Sciences), 2012,40(5):485-490.] | |
[27] | 刘金涛, 宋慧卿, 张行南 , 等. 新安江模型理论研究的进展与探讨[J]. 水文, 2014,34(1):1-6. |
[ Liu J T, Song H Q, Zhang X N , et al. A discussion on advances in theories of xinanjiang model[J]. Journal of China Hydrology, 2014,34(1):1-6.] |
[1] | 曾梦熊, 华一新, 张江水, 曹一冰, 张政. 多粒度时空对象动态行为表达模型与方法研究[J]. 地球信息科学学报, 2021, 23(1): 104-112. |
[2] | 谢雨芮, 江南, 赵文双, 郝睿. 基于多粒度时空对象的作战实体对象化建模研究[J]. 地球信息科学学报, 2021, 23(1): 84-92. |
[3] | 张政, 华一新, 张亚军, 曾梦熊, 杨振凯. 以节点为中心的关系边聚类与可视化算法[J]. 地球信息科学学报, 2020, 22(9): 1779-1788. |
[4] | 林珲, 胡明远, 陈旻, 张帆, 游兰, 陈宇婷. 从地理信息系统到虚拟地理环境的认知转变[J]. 地球信息科学学报, 2020, 22(4): 662-672. |
[5] | 蔡博文,王树根,王磊,邵振峰. 基于深度学习模型的城市高分辨率遥感影像 不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1420-1429. |
[6] | 华一新, 周成虎. 面向全空间信息系统的多粒度时空对象数据模型描述框架[J]. 地球信息科学学报, 2017, 19(9): 1142-1149. |
[7] | 张政, 华一新, 张晓楠, 郭邵萌, 文娜. 多粒度时空对象关联关系基本问题初探[J]. 地球信息科学学报, 2017, 19(9): 1158-1163. |
[8] | 王健健, 王艳楠, 周良辰, 林冰仙. 多粒度时空对象关联关系的分类体系与表达模型[J]. 地球信息科学学报, 2017, 19(9): 1164-1170. |
[9] | 李冬双, 刘袁, 石格格, 俞肇元. 基于时变网络的多粒度时空对象关系演化过程表达与建模[J]. 地球信息科学学报, 2017, 19(9): 1171-1177. |
[10] | 萧声隽, 宗真, 项丽燕, 胡勇. 多粒度时空对象空间关系的统一表达与计算[J]. 地球信息科学学报, 2017, 19(9): 1178-1184. |
[11] | 邱强, 秦承志, 朱效民, 赵晓芳, 方金云. 全空间下并行矢量空间分析研究综述与展望[J]. 地球信息科学学报, 2017, 19(9): 1217-1227. |
[12] | 张宏, 王礼茂, 宋涛, 刘大庆, 文娜. 面向全空间的管道天然气贸易关联关系挖掘[J]. 地球信息科学学报, 2017, 19(9): 1253-1260. |
[13] | 成波, 关雪峰, 向隆刚, 高萌, 吴华意. 一种面向时空对象及其关联关系动态变化表达的概念数据模型[J]. 地球信息科学学报, 2017, 19(11): 1415-1421. |
|