地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (2): 236-245.doi: 10.12082/dqxxkx.2021.200470
谢聪慧1,2,6(), 吴世新1,2,*(
), 张晨1,2,6, 孙文涛1,6, 何海芳3,4,6, 裴韬5,6, 罗格平1,2
收稿日期:
2020-08-17
修回日期:
2020-11-21
出版日期:
2021-02-25
发布日期:
2021-04-25
通讯作者:
吴世新
E-mail:xieconghui19@mails.ucas.ac.cn;wushixin@ms.xjb.ac.cn
作者简介:
谢聪慧(1997— ),女,硕士生,主要从事遥感与地理信息系统应用。E-mail: 基金资助:
XIE Conghui1,2,6(), WU Shixin1,2,*(
), ZHANG Chen1,2,6, SUN Wentao1,6, HE Haifang3,4,6, PEI Tao5,6, LUO Geping1,2
Received:
2020-08-17
Revised:
2020-11-21
Online:
2021-02-25
Published:
2021-04-25
Contact:
WU Shixin
E-mail:xieconghui19@mails.ucas.ac.cn;wushixin@ms.xjb.ac.cn
Supported by:
摘要:
COVID-19暴发以来,世界各国疫情呈现出不同的时序特点,研究不同国家疫情发展模式的特点,揭示其背后的主导因素,可为未来防控策略提供参考。为了揭示不同国家疫情时间序列之间的异同,本文提取了主要疫情国家每日新增病例时间序列的标准差、Hurst指数、治愈率、增长时长、平均增长率、防控效率进行谱系聚类,并从经济、医疗、人文冲突方面对聚类结果进行了成因分析。结果表明,全球疫情发展模式可分为3大类:C型、S型和I型。C型国家时间序列的特点是持续波动上涨,治愈率较低,原因是其人文冲突不利于疫情防控,经济医疗资源经过长时间大量消耗已趋于匮乏,建议在防控中加强宣传疏导,改变观念,统筹分配经济、医疗资源;S型国家时间序列的特点是快速上升后立即下降,并最终保持稳定趋势,总体治愈率较高,其原因是这类国家国内稳定,经济医疗水平较高,以及防控措施及时,建议加强国际合作和科学研究,并为可能到来的二次疫情做好准备;I型国家时间序列特点是缓慢上涨,整体发展趋势不稳定,治愈率较低,原因是其暴发比较晚,程度较小,大部分经济医疗水平以及人文冲突不利于疫情防控,建议汲取较好的防控经验,实施严格的隔离措施,尽量满足疫情期间物资需求,优化治疗方法。
谢聪慧, 吴世新, 张晨, 孙文涛, 何海芳, 裴韬, 罗格平. 基于谱系聚类的全球各国新冠疫情时间序列特征分析[J]. 地球信息科学学报, 2021, 23(2): 236-245.DOI:10.12082/dqxxkx.2021.200470
XIE Conghui, WU Shixin, ZHANG Chen, SUN Wentao, HE Haifang, PEI Tao, LUO Geping. Analysis of Time Series Features of COVID-19 in Various Countries based on Pedigree Clustering[J]. Journal of Geo-information Science, 2021, 23(2): 236-245.DOI:10.12082/dqxxkx.2021.200470
表1
COVID-19综合防控严峻指数构成"
评价指标 | 评价内容 | 意义 | 来源 |
---|---|---|---|
经济因子 | 经济实力、增长、发展 | 经济基础决定了国家是否有足够的经济实力支撑抗疫进度,但经济发达也意味着人群活动性强,从而加大疫情传播,影响时间序列发展趋势 | 兰德公司传染病脆弱性指数中的经济指标[ |
交通运输、技术、通讯等基础设施 | |||
医疗因子 | 个人医疗服务的获取和质量 | 国家的医疗体系是否完善决定了治愈率和死亡率的大小 | 《柳叶刀》发布的2019全球医疗质量和可及性榜单[ |
人文冲突因子 | 暴力内部冲突概率 | 国家的人文冲突程度影响着疫情的传播,国内冲突较多会增强疫情的传播,国民配合程度也会较低,从而降低防控效率,新增确诊病例时间序列也会难以下降 | 欧盟委员会(JRC)联合研究中心开发的多危害风险评估信息全球风险指数增强版(GRI)中的人文指标[ |
高暴力内部冲突概率 | |||
国家权力冲突强度 | |||
国家以下各级冲突强度 |
[1] | Alarcon Falconi T M, Estrella B, Sempértegui F, et al. Effects of data aggregation on time series analysis of Sseasonal infections[J]. International Journal of Environmental Research and Public Health, 2020,17(16):5887. |
[2] | Melin P, Monica J C, Sanchez D, et al. Multiple ensemble neural network models with fuzzy response aggregation for predicting COVID-19 time series: The case of Mexico[J]. Healthcare (Basel), 2020,8(2):181. |
[3] |
Papastefanopoulos V, Linardatos P, Kotsiantis S. COVID-19: A comparison of time series methods to forecast percentage of active cases per population[J]. Applied Science, 2020,10:3880.
doi: 10.3390/app10113880 |
[4] |
Vokó Z, Pitter J G. The effect of social distance measures on COVID-19 epidemics in Europe: An interrupted time series analysis[J]. Geroscience, 2020,42(4):1075-1082.
doi: 10.1007/s11357-020-00205-0 pmid: 32529592 |
[5] |
James N, Menzies M. Cluster-based dual evolution for multivariate time series: Analyzing COVID-19[J]. Chaos, 2020,30(6):061108.
doi: 10.1063/5.0013156 pmid: 32611104 |
[6] | Anastassopoulou C, Russo L, Tsakris A, et al. Data-based analysis, modelling and forecasting of the COVID-19 outbreak[J]. PLoS One, 2020,15(3):e0230405. |
[7] |
Chimmula V K R, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks[J]. Chaos Solitons & Fractals, 2020,135:109864.
doi: 10.1016/j.chaos.2020.109864 pmid: 32390691 |
[8] |
Tian H, Liu Y, LI Y, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020,368(6491):638.
doi: 10.1126/science.abb6105 pmid: 32234804 |
[9] |
Prem K, Liu Y, Russell TW, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study[J]. Lancet Public Health, 2020,5(5):e261-e270.
doi: 10.1016/S2468-2667(20)30073-6 pmid: 32220655 |
[10] |
Kraemer M U G, Yang C H, Gutierrez B, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020,368(6490):493-497.
doi: 10.1126/science.abb4218 pmid: 32213647 |
[11] | Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak[J]. Science, 2020,368(6489):395-400. |
[12] |
Liu M, Ning J, Du Y, et al. Modelling the evolution trajectory of COVID-19 in Wuhan, China: Experience and suggestions[J]. Public Health, 2020,183:76-80.
doi: 10.1016/j.puhe.2020.05.001 pmid: 32442842 |
[13] |
Li H, Xu X L, Dai D W, et al. Air pollution and temperature are associated with increased COVID-19 incidence: A time series study[J]. International Journal of Infectious Diseases, 2020, 97(278-82.
doi: 10.1016/j.ijid.2020.06.030 pmid: 32535298 |
[14] |
Qi H, Xiao S, Shi R, et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis[J]. Science of The Total Environment, 2020,728:138778.
doi: 10.1016/j.scitotenv.2020.138778 |
[15] |
Li R, Rivers C, Tan Q, et al. The demand for inpatient and ICU beds for COVID-19 in the US: lessons from Chinese cities[J]. medRxiv 2020.[cited 2020 November 21]
doi: 10.1101/2021.02.23.21252325 pmid: 33655263 |
[16] |
Li R, Rivers C, Tan Q, et al. Estimated demand for US hospital inpatient and intensive care unit beds for patients with COVID-19 based on comparisons with Wuhan and Guangzhou, China[J]. JAMA Network Open, 2020,3(5):e208297.
doi: 10.1001/jamanetworkopen.2020.8297 pmid: 32374400 |
[17] | Ferguson N M, Laydon D, Nedjati-Gilani G, et al. Impact of Non-Pharmaceutical Interventions (NPIs) to reduce COVID- 19 mortality and healthcare demand[J]. Imperial College London, 2020. |
[18] |
Anderson R M, Heesterbeek H, Klinkenberg D, et al. How will country-based mitigation measures influence the course of the COVID-19 epidemic?[J]. Lancet, 2020,395:931-934.
doi: 10.1016/S0140-6736(20)30567-5 pmid: 32164834 |
[19] | Wang X Z, Smith K, Hyndman R. Characteristic- based clustering for time series data[J]. Data Mining and Knowledge Discovery, 2006,13(3):335-364. |
[20] | Takahashi K, Umano M, Fujimoto N. Partition of time series using hierarchical clustering [C]. Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th InternationalSymposium on Advanced Intelligent Systems (ISIS), 2018. |
[21] | Drago C, Scepi G. Time series clustering from high dimensional data; proceedings of the clustering high-dimensional data [C]. Springer Berlin Heidelberg, 2015. |
[22] | Nanopoulos A, Alcock R, Manolopoulos Y. Feature-based classification of Time-series data[J]. International Journal of Computer Research, 2001,10:49-61. |
[23] | Ouyang R, Ren L, Cheng W, et al. Similarity search and pattern discovery in hydrological time series data mining.[J]. Hydrological Processes, 2010,24(9):1198-1210. |
[24] | 宋辞, 裴韬. 基于特征的时间序列聚类方法研究进展[J]. 地理科学进展, 2012,31(10):1307-1317. |
[ Song C, Pei T. Research progress of feature-based time series clustering methods[J]. Advances in Geographical Sciences, 2012,31(10):1307-1317. ] | |
[25] | Rose O. Estimation of the hurst parameter of long-range dependent time series[R]. Research Report, 1996. |
[26] | Moore, Melinda, Bill Gelfeld,et al. Identifying Future Disease Hot Spots: Infectious Disease Vulnerability Index. Santa Monica, CA: RAND Corporation, 2016. |
[27] |
GBD 2016 Healthcare Access and Quality Collaborators. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016[J]. Lancet, 2018,391(10136):2236-2271.
doi: 10.1016/S0140-6736(18)30994-2 pmid: 29893224 |
[28] | Poljanšek K, Marin-Ferrer , et al. Incorporating epidemics risk in the INFORM Hazard- dependent Global Risk Index[M]. Publications Office of the European Union, Luxembourg, 2018. |
[29] | 袁勇. 非洲疫情形势值得密切关注[N]. 经济日报, 2020-04-11(002). |
[ Yuan Yong. The situation of the epidemic in Africa deserves close attention[N]. Economic Daily, 2020-04-11(002). ] | |
[30] | 刁海洋. 全球疫情复杂演化关键问题依然待解[J]. 健康中国观察, 2020(4):90-91. |
[ Diao H Y. Key issues in the complex evolution of the global epidemic remain to be solved[J]. Healthy China Watch, 2020(4):90-91. ] | |
[31] |
Zarikas V, Poulopoulos S G, Gareiou Z, et al. Clustering analysis of countries using the COVID-19 cases dataset [J]. Data in Brief, 2020,31(105787.
doi: 10.1016/j.dib.2020.106023 pmid: 32728604 |
[32] | James N, Menzies M. Cluster-based dual evolution for multivariate time series: Analyzing COVID-19[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020,30(6):061108. |
[1] | 巫细波, 赖长强, 葛志专. 政府严控期我国地级市COVID-19疫情的时空集聚、演变及自相关效应研究[J]. 地球信息科学学报, 2021, 23(2): 246-258. |
[2] | 毕佳, 王贤敏, 胡跃译, 罗孟涵, 张俊华, 胡凤昌, 丁子洋. 一种基于改进SEIR模型的突发公共卫生事件风险动态评估与预测方法——以欧洲十国COVID-19为例[J]. 地球信息科学学报, 2021, 23(2): 259-273. |
[3] | 韦原原, 江南, 陈云海, 李响, 杨振凯. 顾及时空对象空间相互作用的疫情风险评估建模与应用[J]. 地球信息科学学报, 2021, 23(2): 274-283. |
[4] | 方云皓, 顾康康. 基于多元数据的中国地理空间疫情风险评估探索——以2020年1月1日至4月11日COVID-19疫情数据为例[J]. 地球信息科学学报, 2021, 23(2): 284-296. |
[5] | 曹中浩, 张健钦, 杨木, 贾礼朋, 邓少存. 基于GIS新冠智能体仿真模型及应用——以广州市为例[J]. 地球信息科学学报, 2021, 23(2): 297-306. |
[6] | 杜毅贤, 徐家鹏, 钟琳颖, 侯盈旭, 沈婕. 网络舆情态势及情感多维特征分析与可视化——以COVID-19疫情为例[J]. 地球信息科学学报, 2021, 23(2): 318-330. |
[7] | 刘新, 赵宁, 郭金运, 郭斌. 基于LSTM神经网络的青藏高原月降水量预测[J]. 地球信息科学学报, 2020, 22(8): 1617-1629. |
[8] | 陈芳淼, 黄慧萍, 贾坤. 时空大数据在城市群建设与管理中的应用研究进展[J]. 地球信息科学学报, 2020, 22(6): 1307-1319. |
[9] | 胡最. 传统聚落景观基因的地理信息特征及其理解[J]. 地球信息科学学报, 2020, 22(5): 1083-1094. |
[10] | 柯新利, 肖邦勇, 郑伟伟, 马艳春, 李红艳. 城镇-农业-生态空间划定的多情景模拟[J]. 地球信息科学学报, 2020, 22(3): 580-591. |
[11] | 刘张, 千家乐, 杜云艳, 王楠, 易嘉伟, 孙晔然, 马廷, 裴韬, 周成虎. 基于多源时空大数据的区际迁徙人群多层次空间分布估算模型——以COVID-19疫情期间自武汉迁出人群为例[J]. 地球信息科学学报, 2020, 22(2): 147-160. |
[12] | 杨丹, 周亚男, 杨先增, 郜丽静, 冯莉. LSTM支持下时序Sentinel-1A数据的太白山区植被制图[J]. 地球信息科学学报, 2020, 22(12): 2445-2455. |
[13] | 郑诗晨, 盛业华, 吕海洋. 基于粒子滤波的行车轨迹路网匹配方法[J]. 地球信息科学学报, 2020, 22(11): 2109-2117. |
[14] | 周玲, 李云梅, 赵焕, 房晟忠, 颜翔, 吕恒. 滇池湖滨带植被时空变化及其对滇池总磷浓度的影响[J]. 地球信息科学学报, 2020, 22(10): 1946-1958. |
[15] | 易嘉伟, 杜云艳, 涂文娜. 基于位置大数据的国庆假期青藏高原人群分布 时空变化模式挖掘[J]. 地球信息科学学报, 2019, 21(9): 1367-1381. |
|