地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (7): 1196-1207.doi: 10.12082/dqxxkx.2021.200639
收稿日期:
2020-10-26
修回日期:
2020-12-20
出版日期:
2021-07-25
发布日期:
2021-09-25
通讯作者:
陈楠
作者简介:
贺卓文(1995— ),女,山西临汾人,硕士生,主要从事地理信息服务研究。E-mail: hezhuowen_8523@163.com
基金资助:
HE Zhuowen1,2(), CHEN Nan1,2,*(
)
Received:
2020-10-26
Revised:
2020-12-20
Online:
2021-07-25
Published:
2021-09-25
Contact:
CHEN Nan
Supported by:
摘要:
沟谷侵蚀是塑造黄土地表侵蚀形态的主要动力,沟谷的发育过程深刻地影响着黄土地貌的发育及演化。本文在黄土高原选择6个典型地貌样区,以样区的数字高程模型为基本数据源提取沟谷系统。将沟谷系统中的沟谷节点、沟谷源点和流域出水口点作为网络节点,网络节点之间的空间拓扑关系为边,高程差为权值,构建黄土高原沟谷加权复杂网络模型。对黄土沟谷地貌的节点特征和空间结构进行定量刻画和分析,得到黄土高原不同地貌类型网络特征的空间格局及其变化,并进一步映射地貌的发育过程及演化机理。研究结果表明:① 黄土高原沟谷加权网络的点强度累积概率分布呈指数分布,相关性系数皆达到0.80以上,该网络正处于向无标度网络转化的过渡期;② 样区从南到北,沟谷特征点的点强度值呈现逐渐减小的态势,且点强度的分布具有不对称性,沟谷右侧侵蚀强度较高,点强度分布较多;③ 平均路径长度和网络结构熵值在绥德一带最大,分别为30.94、6.31,并向南北两侧呈减少的趋势,网络密度值的变化与之相反;3个指标分别从网络结构的连通性、稳定性和紧密性反映了不同沟谷地貌类型的侵蚀程度以及地貌系统的演化机理;④ 网络指标与传统地貌指标的相关性系数均超过0.85,其可以科学、准确地表达地貌形态的复杂性及地貌的发育阶段,有望作为沟谷地貌地学特征研究的参数。该方法考虑了沟谷地貌的空间拓扑关系以及系统的整体性,为复杂表面形态的地貌研究提出了一种新的思路和方法。
贺卓文, 陈楠. 复杂网络理论在黄土高原沟谷地貌特征研究中的应用[J]. 地球信息科学学报, 2021, 23(7): 1196-1207.DOI:10.12082/dqxxkx.2021.200639
HE Zhuowen, CHEN Nan. Feature Analysis of Gully Landforms in the Loess Plateau based on Complex Networks[J]. Journal of Geo-information Science, 2021, 23(7): 1196-1207.DOI:10.12082/dqxxkx.2021.200639
表3
各样区累积加权度函数拟合对比
样区 | 指数函数 | 幂函数 | |||||
---|---|---|---|---|---|---|---|
拟合方程 | R2 | 残差平方和 | 拟合方程 | R2 | 残差平方和 | ||
淳化 | Y=188.65e-0.018x | 0.881 | 9.240 | Y=2372.12x-0.969 | 0.573 | 32.994 | |
宜君 | Y=180.71e-0.023x | 0.951 | 8.521 | Y=1571.62x-0.969 | 0.580 | 73.067 | |
富县 | Y=212.97e-0.023x | 0.920 | 11.383 | Y=1398.23x-0.904 | 0.505 | 70.540 | |
延川 | Y=146.23e-0.021x | 0.983 | 3.349 | Y=3493.97x-1.188 | 0.710 | 56.348 | |
绥德 | Y=235.25e-0.037x | 0.953 | 11.860 | Y=3535.60x-1.307 | 0.606 | 99.334 | |
神木 | Y=205.29e-0.041x | 0.958 | 3.791 | Y=4705.84x-1.386 | 0.726 | 24.481 |
[1] | 汤国安, 李发源, 杨昕, 等. 黄土高原数字地形分析探索与实践[M]. 北京: 科学出版社, 2015:1-30. |
[ Tang G A, Li F Y, Yang X, et al. Exploration and practice of digital terrain analysis on the loess plateau[M]. Beijing: Science Press, 2015:1-30. ] | |
[2] |
熊礼阳, 汤国安. 黄土高原沟谷地貌发育演化研究进展与展望[J]. 地球信息科学学报, 2020, 22(4):816-826.
doi: 10.12082/dqxxkx.2020.190519 |
[ Xiong L Y, Tang G A. Research progresses and prospects of gully landform formation and evolution in the Loess Plateau of China[J]. Journal of Geo-information Science, 2020, 22(4):816-826. ] | |
[3] | 刘逸文, 熊礼阳, 方炫. 黄土地貌地形特征点格局研究[J]. 地理与地理信息科学, 2017, 33(5):35-41. |
[ Liu Y W, Xiong L Y, Fang X. Pattern analysis of terrain feature points of loess topography[J]. Geography and Geo-Information Science, 2017, 33(5):35-41. ] | |
[4] | 陈楠, 王钦敏, 汤国安, 等. 基于BP神经网络自动提取沟谷研究[J]. 中国水土保持科学, 2006, 4(5):30-34. |
[ Chen N, Wang Q M, Tang G A, et al. Automatic extraction of channels and valleys based on bp neural network[J]. Science of Soil and Water Conservation, 2006, 4(5):30-34. ] | |
[5] |
Fu S Y, Wu L S. Feature line extraction from point clouds based on geometric structure of point space[J]. 3D Research, 2019, 10(2):1-18.
doi: 10.1007/s13319-018-0210-y |
[6] |
Deng Y, Wilson J P. Multi-scale and multi-criteria mapping of mountain peaks as fuzzy entities[J]. International Journal of Geographical Information Science, 2008, 22(2):205-218.
doi: 10.1080/13658810701405623 |
[7] | 李晨瑞, 李发源, 马锦, 等. 黄河中游流域地貌形态特征研究[J]. 地理与地理信息科学, 2017, 33(4):107-112,2. |
[ Li C R, Li F Y, Ma J, et al. The study of watershed topography characteristics in the middle reaches of the yellow river[J]. Geography and Geo-information Science, 2017, 33(4):107-112,2. ] | |
[8] | 苟娇娇, 王飞, 罗明良, 等. 基于DEM的黄土高原沟谷节点分形特征研究[J]. 水土保持学报, 2016, 30(3):109-114. |
[ Gou J J, Wang F, Luo M L, et al. Fractal characteristics of channel junctions(cjs) based on dem[J]. Bulletin of Soil and Water Conservation, 2016, 30(3):109-114. ] | |
[9] | 陈楠. DEM分辨率变化对坡度误差的影响[J]. 武汉大学学报·信息科学版, 2013, 38(5):594-598. |
[ Chen N. Influence of resolutions of DEM on the error of slope[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):594-598. ] | |
[10] | 祝士杰, 汤国安, 李发源, 等. 基于DEM的黄土高原面积高程积分研究[J]. 地理学报, 2013, 68(7):921-932. |
[ Zhu S J, Tang G A, Li F Y, et al. Spatial variation of hypsometric integral in the Loess Plateau based on DEM[J]. Acta Geographica Sinica, 2013, 68(7):921-932. ] | |
[11] |
Mukul M, Srivastava V, Mukul M. Out-of-sequence reactivation of the munsiari thrust in the relli river basin, darjiling himalaya, india: insights from shuttle radar topography mission digital elevation model-based geomorphic indices[J]. Geomorphology, 2017, 284:229-237.
doi: 10.1016/j.geomorph.2016.10.029 |
[12] | 蔡凌雁, 汤国安, 熊礼阳, 等. 基于DEM的陕北黄土高原典型地貌分形特征研究[J]. 水土保持通报, 2014, 34(3):141-144. |
[ Cai L Y, Tang G A, Xiong L Y, et al. An analysis on fractal characeeristics of typical landform patterns in northern shaanxi loess platea based on dem[J]. Bulletin of Soil and Water Conservation, 2014, 34(3):141-144,329. ] | |
[13] | 邹宝裕, 董丞妍, 苟娇娇, 等. 数字高程模型提取山顶点及空间格局差异[J]. 遥感信息, 2016, 31(2):124-128. |
[ Zou B Y, Dong C Y, Gou J J, et al. Extraction and spatial pattern of landform peaks based on DEMs[J]. Remote Sensing Information, 2016, 31(2):124-128. ] | |
[14] | 蒲阳, 罗明良, 刘维明, 等. 基于DEM的山顶点关联特征研究——以川东褶皱山系华蓥山主峰区为例[J]. 地理与地理信息科学, 2018, 34(4):96-100. |
[ Pu Y, Luo M L, Liu W M, et al. Research on the correlation characteristics of peak points based on DEM: A case study of the main peak area of Huaying mountain of folded mountain system in east Sichuan[J]. Geography and Geo-information Science, 2018, 34(4):96-100. ] | |
[15] | 王庆国, 张昆仑. 复杂网络理论的武汉市路网结构特征[J]. 测绘科学, 2019, 44(4):66-71. |
[ Wang Q G, Zhang K L. Research on the structure characteristics of Wuhan road network based on complex network theory[J]. Science of Surveying and Mapping, 2019, 44(4):66-71. ] | |
[16] |
Tian Z, Jia L, Dong H, et al. Analysis of urban road traffic network based on complex network[J]. Procedia Engineering, 2016, 137:537-546.
doi: 10.1016/j.proeng.2016.01.290 |
[17] |
郭建科, 何瑶, 侯雅洁. 中国沿海集装箱港口航运网络空间联系及区域差异[J]. 地理科学进展, 2018, 37(11):1499-1509.
doi: 10.18306/dlkxjz.2018.11.006 |
[ Guo J K, He Y, Hou Y J. Spatial connection and regional difference of the coastal container port shipping network of China[J]. Progress in Geography, 2018, 37(11):1499-1509. ] | |
[18] | Bertelli R, Bonanni A, Di Donato A, et al. Regulatory T cells and minimal change nephropathy: In the midst of a complex network[J]. Clinical & Experimental Immunology, 2016, 183(2):166-174. |
[19] |
Liu S L, Dong Y H, Deng L, et al. Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: A case study in the Lancang River Valley[J]. Ecological Indicators, 2014, 36:160-168.
doi: 10.1016/j.ecolind.2013.07.018 |
[20] | 刘建华, 王戈, 杨斓, 等. 包头市草原景观斑块耦合网络结构特征研究[J]. 农业机械学报, 2019, 50(3):196-203. |
[ Liu J H, Wang G, Yang L, et al. Structural characteristics of coupling network of grassland landscape patches in Baotou city[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3):196-203. ] | |
[21] |
武鹏飞, 宫辉力, 周德民. 基于复杂网络的官厅水库流域土地利用/覆被变化[J]. 地理学报, 2012, 67(1):113-121.
doi: 10.11821/xb201201012 |
[ Wu P F, Gong H L, Zhou D M. Land use and land cover change in watershed of guanting reservoir based on complex network[J]. Acta Geographica Sinica, 2012, 67(1):113-121. ] | |
[22] | 田剑, 汤国安, 赵明伟. 基于复杂网络模型的黄土模拟流域坡面形态演化[J]. 农业工程学报, 2015, 31(13):164-170. |
[ Tian J, Tang G A, Zhao W M. Hillslope morphology evolution in loess watershed model based on complex network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13):164-170. ] | |
[23] | 田剑, 汤国安, 赵明伟. 流域地形景观系统的复杂网络描述[J]. 地理与地理信息科学, 2014, 30(4):22-26. |
[ Tian J, Tang G A, Zhao M W. Complex network description of terrain landscape system on drainage basin[J]. Geography and Geo-information Science, 2014, 30(4):22-26. ] | |
[24] | 梁林, 赵玉帛, 刘兵. 京津冀城市间人口流动网络研究——基于腾讯位置大数据分析[J]. 西北人口, 2019, 40(1):20-28. |
[ Liang L, Zhao Y B, Liu B. Research on the population mobile network in Beijing-Tianjin-Hebei: Based on tencent location big data[J]. Northwest Population Journal, 2019, 40(1):20-28. ] | |
[25] | 赖晗, 芮小平, 梁汉东, 等. 基于均值变点分析的三峡库区河网提取研究[J]. 测绘科学, 2012, 37(5):173-175. |
[ Lai H, Rui X P, Liang H D, et al. Extraction of drainage network in Three Gorge reservoir area based on mean change point method[J]. Science of Surveying and Mapping, 2012, 37(5):173-175. ] | |
[26] |
Costa F P D, Grinfeld M, Wattis J A D. A hierarchical cluster system based on Horton-Strahler Rules for river networks[J]. Studies in Applied Mathematics, 2002, 109(3):163-204.
doi: 10.1111/sapm.2002.109.issue-3 |
[27] | 刘晓, 王雷, 高佩玲. 利用几何网络提取河网径流节点的方法研究[J]. 测绘科学, 2011, 36(5):85-86,72. |
[ Liu X, Wang L, Gao P L. Extraction of stream runoff nodes based on geometric network[J]. Science of Surveying and Mapping, 2011, 36(5):85-86,72. ] | |
[28] | 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京: 清华大学出版社, 1996. |
[ Wang X F, Li X, Chen G R. Theory and application of complex network[M]. Beijing: Tsinghua University Press, 1996. ] | |
[29] |
Zhu H C, Zhao Y P, Xu Y X, et al. Hierarchy structure characteristics analysis for the China Loess watersheds based on gully node calibration[J]. Journal of Mountain Science, 2018, 15(12):2637-2650.
doi: 10.1007/s11629-018-5000-8 |
[30] |
朱红春, 李永胜, 汤国安. 面向沟谷特征点簇的空间结构模型与应用[J]. 地球信息科学学报, 2014, 16(5):707-711.
doi: 10.3724/SP.J.1047.2014.00707 |
[ Zhu H C, Li Y S, Tang G A, The spatial structural model established for gully feature points cluster and its application[J]. Journal of Geo-information Science, 2014, 16(5):707-711. ] | |
[31] |
谢轶群, 朱红春, 汤国安, 等. 基于DEM的沟谷特征点提取与分析[J]. 地球信息科学学报, 2013, 15(1):61-67.
doi: 10.3724/SP.J.1047.2013.00061 |
[ Xie Y Q, Zhu H C, Tang G A, et al. Extraction and analysis of gully feature points based on DEM[J]. Journal of Geo-information Science, 2013, 15(1):61-67. ] | |
[32] | 胡胜, 邱海军, 王新刚, 等. 基于高分辨地形的黄土滑坡特征参数提取及其应用意义[J]. 第四纪研究, 2018, 38(2):367-379. |
[ Hu S, Qiu H J, Wang X G, et al. Extracting characteristic parameters of loess landslides based on high-resolution topography and its application prospect[J]. Quaternary Sciences, 2018, 38(2):367-379. ] | |
[33] |
田剑, 汤国安, 周毅, 等. 黄土高原沟谷密度空间分异特征研究[J]. 地理科学, 2013, 33(5):622-628.
doi: 10.13249/j.cnki.sgs.2013.05.622 |
[ Tian J, Tang G A, Zhou Y, et al. Spatial variation of gully density in the Loess Plateau[J]. Scientia Geographica Sinica, 2013, 33(5):622-628. ] | |
[34] | 李阳, 周毅, 雷雪, 等. 基于流域单元的黄土地貌正负地形因子量化关系模拟[J]. 干旱区资源与环境, 2019, 33(7):78-84. |
[ Li Y, Zhou Y, Lei X, et al. Simulation of quantitative relationship between positive and negative topographic factors of loess based on catchment unit[J]. Journal of Arid Land Resources and Environment, 2019, 33(7):78-84. ] | |
[35] | 信忠保, 许炯心, 马元旭. 黄土高原面积-高程分析及其侵蚀地貌学意义[J]. 山地学报, 2008, 26(3):104-111. |
[ Xin Z B, Xu J X, Ma Y X. Hypsometric integral analysis and its sediment yield implications in the Loess Plateau, China[J]. Mountain Research, 2008, 26(3):104-111. ] | |
[36] |
陈艳华, 韦素琼, 陈松林. 大陆台资跨界生产网络的空间组织模式及其复杂性研究——基于大陆台商千大企业数据[J]. 地理科学, 2017, 37(10):1517-1526.
doi: 10.13249/j.cnki.sgs.2017.10.008 |
[ Chen Y H, Wei S Q, Chen S L. The spatial organization pattern and its complexity characteristics of cross-border production networks of Taiwan-funded enterprises in mainland China: Based on top 1000 taiwan-funded enterprises in mainland China[J]. Scientia Geographica Sinica, 2017, 37(10):1517-1526. ] | |
[37] | 李晨瑞. 基于地形特征要素的黄土沟谷发育及区域差异性研究[D]. 南京:南京师范大学, 2018. |
[ Li C R. Studies on gully development and regional difference in Loess Plateau based on topographic feature elements[D]. Nanjing Normal University, 2018. ] | |
[38] |
周毅, 王泽涛, 杨锋. 基于DEM的黄土沟谷横剖面形态特征研究——以宜君,延安,绥德为例[J]. 地理科学, 2020, 40(3):455-465.
doi: 10.13249/j.cnki.sgs.2020.03.014 |
[ Zhou Y, Wang Z T, Yang F. Morphological characteristics of gully cross-section in the loess regionbased DEM: Taking Yijun, Yan'an and Suide as cases[J]. Geographica Sinica, 2020, 40(3):455-465. ] | |
周毅, 王泽涛, 杨锋. 基于DEM的黄土沟谷横剖面形态特征研究——以宜君、延安、绥德为例[J]. 地理科学, 2020, 40(3):455-465. | |
[ Zhou Y, Wang Z T, Yang F. Morphological characteristics of gully cross-section in the loess region based DEM: taking Yijun, Yan'an and Suide as cases[J]. Scientia Geographica Sinica, 2020, 40(3):455-465. ] | |
[39] | 段家朕. 基于DEM的晋西北地区黄土沟谷不对称特征研究[D]. 南京:南京师范大学, 2017. |
[ Duan J L. DEM based research on the asymmetrical characteristic of loess gully morphology in the northwestern Shanxi province[D]. Nanjing: Nanjing Normal University, 2017. | |
[40] | 牛腾, 岳德鹏, 张启斌, 等. 潜在生态网络空间结构与特性研究[J]. 农业机械学报, 2019, 50(8):173-182. |
[ Niu T, Yue D P, Zhang Q B, et al. Spatial structure and characteristics of potential ecological networks[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8):173-182. ] | |
[41] |
Lin J, Huang Y, Wang M K, et al. Assessing the sources of sediment transported in gully systems using a fingerprinting approach: An example from South-east China[J]. Catena, 2015, 129:9-17.
doi: 10.1016/j.catena.2015.02.012 |
[42] | 陈世莉, 罗明良, 王春, 等. 基于网络图论的黄土模拟小流域水系演化研究[J]. 地球与环境, 2013, 41(5):542-546. |
[ Chen S L, Luo M L, Wang C, et al. Research on simulated loess watershed based on the network graph theory[J]. Earth and Environment, 2013, 41(5):542-546. ] | |
[43] |
Zhao W D, Tang G A, Ma L, et al. Digital elevation model-based watershed geomorphic entropy for the study of landscape evolution of a watershed geomorphic system in the loess landforms of China[J]. Progress in Physical Geography, 2017, 41(2):139-153.
doi: 10.1177/0309133316669091 |
Zhao W D, Tang G A, Ma L, et al. Digital elevation model-based watershed geomorphic entropy for the study of landscape evolution of a watershed geomorphic system in the loess landforms of China[J]. Progress in Physical Geography: Earth and Environment, 2017, 41(2):139-153. | |
[44] | 谢涛, 尹前锋, 高贺, 等. 基于地貌信息熵的天山公路冰川泥石流危险性评价[J]. 冰川冻土, 2019, 41(2):400-406. |
[ Xie T, Yin Q F, Gao H, et al. Research on simulated loess watershed based on the network graph theory[J]. Journal of Glaciology and Geocryology, 2019, 41(2):400-406. ] | |
[45] | 赵维军, 董奇群, 燕婷婷, 等. 西南紫色土水蚀区坡谱信息熵与地形因子关系分析[J]. 农业工程学报, 2020, 36(9):160-167,342. |
[ Zhao W J, Dong Q Q, Yan T T, et al. Relationship between slope spectrum's information entropy and terrain factors in water erosion areas of purple soil in southwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9):160-167,342. ] | |
[46] | 朱红春, 刘海英, 张继贤, 等. 基于DEM的流域地形因子提取与量化关系研究——以陕北黄土高原的实验为例[J]. 测绘科学, 2007, 32(2):138-140. |
[ Zhu H C, Liu H Y, Zhang J X, et al. Research on the topographic factors and its' mathematical simulation based on DEMs-a case study in the loess plateau of north Shaanxi province[J]. Science of Surveying and Mapping, 2007, 32(2):138-140. ] | |
[47] | 李发源, 汤国安, 贾旖旎, 等. 坡谱信息熵尺度效应及空间分异[J]. 地球信息科学, 2007, 9(4):13-18. |
[ Li F Y, Tang G A, Jia Y N, et al. Scale effect and spatial distribution of slope spectrum's information entropy[J]. Journal of Geo-information Science, 2007, 9(4):13-18. ] |
[1] | 任鹏, 彭建东, 杨红, 王安琪, 代琦. 武汉市轨道交通站点周边地区职住平衡与建成环境的关系研究[J]. 地球信息科学学报, 2021, 23(7): 1231-1245. |
[2] | 蒋圣, 汤国安, 杨昕, 熊礼阳, 钱程扬. 基于DEM的黄土高原地形纹理概念模型[J]. 地球信息科学学报, 2021, 23(6): 959-968. |
[3] | 孙定钊, 梁友嘉. 基于改进Markov-CA模型的黄土高原土地利用多情景模拟[J]. 地球信息科学学报, 2021, 23(5): 825-836. |
[4] | 姚博睿, 秦昆, 罗萍, 朱炤瑗, 漆林. 特殊事件中国际关系网络时序演化分析[J]. 地球信息科学学报, 2021, 23(4): 632-645. |
[5] | 於佳宁, 刘凯, 张冰玥, 黄滢, 范晨雨, 宋春桥, 汤国安. 中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析[J]. 地球信息科学学报, 2021, 23(4): 646-657. |
[6] | 何永红, 靳鹏伟, 蒋陈纯. 多尺度相关性分析的机载双极化InSAR轨道误差校正方法[J]. 地球信息科学学报, 2021, 23(4): 670-679. |
[7] | 蔡一乐, 曹诗颂, 杜明义, 李善飞, 陈姗姗. 中国地级市人为热总量的估算及驱动因素分析[J]. 地球信息科学学报, 2021, 23(3): 405-418. |
[8] | 王晓凡, 方志祥, 仲浩宇, 邹欣妍. 传染病防控下的市民慢性病药品现场购药需求的周期优化[J]. 地球信息科学学报, 2021, 23(2): 307-317. |
[9] | 柳林, 吴雨菡, 宋广文, 肖露子. 犯罪防控警务策略及其时空效益评估研究进展[J]. 地球信息科学学报, 2021, 23(1): 29-42. |
[10] | 张小东, 韩昊英, 陈宇. 2003—2018年中国地级城市土地出让交易状况及时空动态特征[J]. 地球信息科学学报, 2020, 22(9): 1823-1836. |
[11] | 何永红, 靳鹏伟, 舒敏. 基于多尺度相关性分析的InSAR对流层延迟误差改正算法[J]. 地球信息科学学报, 2020, 22(9): 1878-1886. |
[12] | 陶宇, 王春, 徐燕, 张光祖, 宋素素, 杨维. DEM建模视角下的城市道路分类与表达[J]. 地球信息科学学报, 2020, 22(8): 1589-1596. |
[13] | 李玉, 李奕燃, 王光辉, 石雪. 基于加权指数函数模型的高光谱图像分类方法[J]. 地球信息科学学报, 2020, 22(8): 1642-1653. |
[14] | 刘俊楠, 刘海砚, 陈晓慧, 郭漩, 郭文月, 朱新铭, 赵清波. 面向多源地理空间数据的知识图谱构建[J]. 地球信息科学学报, 2020, 22(7): 1476-1486. |
[15] | 赵韶雅, 杨星斗, 戴特奇, 张超. 基于刷卡数据的公共汽车客流网络复杂性日内变化研究[J]. 地球信息科学学报, 2020, 22(6): 1254-1267. |
|