地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (7): 1272-1285.doi: 10.12082/dqxxkx.2021.200652
李文萍1,2(), 王伟1,*(
), 高星1, 伍宇明1, 王学成1,2, 刘青1,2
收稿日期:
2020-11-01
修回日期:
2020-12-28
出版日期:
2021-07-25
发布日期:
2021-09-25
通讯作者:
* 王 伟(1972— ),男,河北涿州人,博士,副研究员,主要从事自然灾害GIS研究。E-mail: wang_wei@lreis.ac.cn作者简介:
李文萍(1996— ),女,安徽淮南人,硕士生,主要从事遥感与GIS应用研究。E-mail: liwp.19s@igsnrr.ac.cn
基金资助:
LI Wenping1,2(), WANG Wei1,*(
), GAO Xing1, WU Yuming1, WANG Xuecheng1,2, LIU Qing1,2
Received:
2020-11-01
Revised:
2020-12-28
Online:
2021-07-25
Published:
2021-09-25
Contact:
WANG Wei
Supported by:
摘要:
面向对象的方法提取湖泊,常常面临边界识别不精确的问题。本研究在面向对象方法的基础上,利用分水岭算法,解决湖泊边界识别问题。该方法初步将遥感影像划分为确定湖泊区域、潜在湖泊区域和背景;然后通过分水岭算法对潜在湖泊区域进行二次提取。研究选择昆仑-喀喇和喜马拉雅山脉区域的3个山地湖泊发育良好的区域作为实验区,利用Landsat系列影像验证该算法。实验结果表明该算法的用户精度、生产者精度和总体精度分别高达99.59%、98.47%和96.53%。相比于单一的面向对象方法,本文方法更适合于山地湖泊提取,能够更加准确地描绘湖泊的实际边界,也能够减弱面向对象方法中分割尺度和分类阈值对提取结果的影响。
李文萍, 王伟, 高星, 伍宇明, 王学成, 刘青. 融合面向对象和分水岭算法的山地湖泊提取方法[J]. 地球信息科学学报, 2021, 23(7): 1272-1285.DOI:10.12082/dqxxkx.2021.200652
LI Wenping, WANG Wei, GAO Xing, WU Yuming, WANG Xuecheng, LIU Qing. A Lake Extraction Method in Mountainous Regions based on the Integration of Object-Oriented Approach and Watershed Algorithm[J]. Journal of Geo-information Science, 2021, 23(7): 1272-1285.DOI:10.12082/dqxxkx.2021.200652
表1
研究区Landsat卫星影像数据列表
序号 | 条带号/行编号 | 成像时间 | 传感器 | 含云量/% | 经度/纬度 |
---|---|---|---|---|---|
LT5_1 | 143/48 | 1994-10-27 | TM | 1.66 | 83.257°E/31.758°N |
LT5_2 | 145/36 | 1994-10-25 | TM | 1.89 | 80.947°E/34.623°N |
LT5_3 | 150/34 | 2011-08-24 | TM | 0.47 | 74.089°E/37.486°N |
LE7_1 | 143/48 | 2000-09-20 | ETM+ | 1.22 | 83.233°E/31.743°N |
LE7_2 | 145/36 | 1999-09-29 | ETM+ | 1.00 | 80.957°E/34.609°N |
LE7_3 | 150/34 | 2001-10-07 | ETM+ | 2.00 | 74.026°E/37.472°N |
LC8_1 | 143/48 | 2018-09-27 | OLI | 0.68 | 83.322°E/31.732°N |
LC8_2 | 145/36 | 2013-09-27 | OLI | 1.53 | 81.015°E/34.611°N |
LC8_3 | 150/34 | 2014-10-03 | OLI | 2.16 | 74.120°E/37.475°N |
表2
本文方法和面向对象湖泊提取结果精度评价
方法 | 影像 | UA | PA | CE | OE | OA |
---|---|---|---|---|---|---|
本文方法 | LT5_1 | 99.88 | 99.15 | 0.12 | 0.85 | 98.19 |
LT5_2 | 99.71 | 99.62 | 0.29 | 0.38 | 98.95 | |
LT5_3 | 99.21 | 94.35 | 0.79 | 5.65 | 87.95 | |
LE7_1 | 99.83 | 99.57 | 0.17 | 0.43 | 98.97 | |
LE7_2 | 99.64 | 99.53 | 0.36 | 0.47 | 98.71 | |
LE7_3 | 99.68 | 96.25 | 0.32 | 3.75 | 92.19 | |
LC8_1 | 99.38 | 99.76 | 0.62 | 0.24 | 98.91 | |
LC8_2 | 99.72 | 99.58 | 0.28 | 0.42 | 98.88 | |
LC8_3 | 99.22 | 98.40 | 0.78 | 1.60 | 96.02 | |
面向对象 | LT5_1 | 99.41 | 97.14 | 0.59 | 2.86 | 93.70 |
LT5_2 | 99.54 | 96.86 | 0.46 | 3.14 | 93.27 | |
LT5_3 | 99.41 | 81.77 | 0.59 | 18.23 | 63.06 | |
LE7_1 | 99.99 | 97.02 | 0.01 | 2.98 | 94.04 | |
LE7_2 | 100.00 | 94.69 | 0.00 | 5.31 | 89.37 | |
LE7_3 | 99.93 | 80.12 | 0.07 | 19.88 | 60.18 | |
LC8_1 | 99.83 | 97.74 | 0.17 | 2.26 | 95.32 | |
LC8_2 | 99.93 | 96.11 | 0.07 | 3.89 | 92.15 | |
LC8_3 | 99.20 | 81.87 | 0.80 | 18.13 | 63.08 |
表3
不同分割尺度湖泊提取结果精度评价
方法 | NDWI(≥) | UA | PA | CE | OE | OA |
---|---|---|---|---|---|---|
本文方法 | 10 | 99.74 | 98.74 | 0.26 | 1.26 | 97.22 |
15 | 99.93 | 98.80 | 0.07 | 1.20 | 97.54 | |
20 | 99.85 | 98.67 | 0.15 | 1.33 | 97.18 | |
25 | 99.77 | 98.54 | 0.23 | 1.46 | 96.85 | |
面向对象 | 10 | 99.95 | 93.07 | 0.05 | 6.93 | 86.09 |
15 | 100.00 | 93.36 | 0.00 | 6.64 | 86.71 | |
20 | 99.99 | 93.06 | 0.01 | 6.94 | 86.11 | |
25 | 99.98 | 93.57 | 0.02 | 6.43 | 87.12 |
表4
不同全局阈值湖泊提取结果精度评价
方法 | NDWI(≥) | UA | PA | CE | OE | OA |
---|---|---|---|---|---|---|
本文方法 | 0 | 99.68 | 96.25 | 0.32 | 3.75 | 92.19 |
0.10 | 99.78 | 95.40 | 0.22 | 4.60 | 90.59 | |
0.15 | 99.82 | 93.56 | 0.18 | 6.44 | 86.96 | |
0.20 | 99.79 | 88.37 | 0.21 | 11.63 | 76.55 | |
面向对象 | 0 | 99.93 | 80.08 | 0.07 | 19.92 | 60.09 |
0.10 | 99.99 | 78.93 | 0.01 | 21.07 | 57.85 | |
0.15 | 100.00 | 75.85 | 0.00 | 24.15 | 51.70 | |
0.20 | 100.00 | 58.88 | 0.00 | 41.12 | 17.77 |
[1] |
车向红, 冯敏, 姜浩, 等. 2000—2013年青藏高原湖泊面积MODIS遥感监测分析[J]. 地球信息科学学报, 2015, 17(1):99-107.
doi: 10.3724/SP.J.1047.2015.00099 |
[ Che X H, Feng M, Jiang H, et al. Detection and analysis of Qinghai-Tibet plateau lake area from 2000 to 2013[J]. Journal of Geo-information Science, 2015, 17(1):99-107. ] | |
[2] | 姜浩. 基于光学遥感的高精度陆地水体提取方法研究[D]. 北京:中国科学院大学, 2015. |
[ Jiang H. High-precision extraction of terrestrial water body based on optical remote sensing imagery[D]. Beijing: University of Chinese Academy of Sciences, 2015. ] | |
[3] | 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2):147-161. |
[ Li D, Wu B S, Chen B W, et al. Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(2):147-161. ] | |
[4] | 田园, 张雪芹, 孙瑞. 基于多源、多时相遥感影像的高原湖泊提取及其不确定性——以西藏羊卓雍错流域为例[J]. 冰川冻土, 2012, 34(3):563-572. |
[ Tian Y, Zhang X Q, Sun R. Extracting alpine lake information based on multi-source and Multi Temporal satellite images and its uncertainty analysis—A case study in yamzhog yumco basin, south Tibet[J]. Journal of Glaciology and Geocryology, 2012, 34(3):563-572. ] | |
[5] | 沈金祥, 杨辽, 陈曦, 等. 面向对象的山区湖泊信息自动提取方法[J]. 国土资源遥感, 2012, 24(3):84-91. |
[ Shen J X, Yang L, Chen X, et al. A method for object-oriented automatic extraction of lakes in the mountain area from remote sensing image[J]. Remote Sensing for Land & Resources, 2012, 24(3):84-91. ] | |
[6] |
Rishikeshan C A, Ramesh H. An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146:11-21.
doi: 10.1016/j.isprsjprs.2018.08.014 |
[7] | Paul F. Evaluation of different methods for glacier mapping using landsat tm[J]. EARSeL EProceedings, 2000, 1(1):239-245. |
[8] | 李小文, 汪骏发, 王锦地, 等. 多角度与热红外对地遥感[M]. 北京: 科学出版社, 2001. |
[ Li X W, Wang J F, Wang J D, et al. Multi-angle and thermal infrared remote sensing[M]. Bejing: Science Press, 2001. ] | |
[9] | 种丹, 张世强, 李浩杰, 等. 基于光学遥感的湖泊水体信息提取研究进展[J]. 人民黄河, 2018, 40(3):49-53,75. |
[ Zhong D, Zhang S Q, Li H J, et al. Review on the extraction of lake water body information from optics remote sensing data[J]. Yellow River, 2018, 40(3):49-53,75. ] | |
[10] | 骆剑承, 盛永伟, 沈占锋, 等. 分步迭代的多光谱遥感水体信息高精度自动提取[J]. 遥感学报, 2009, 13(4):610-615. |
[ Luo J C, Sheng Y W, Shen Z F, et al. Automatic and high-precise extraction for water information from multispectral images with the step-by-step iterative transformation mechanism[J]. Journal of Remote Sensing, 2009, 13(4):610-615. ] | |
[11] |
Zhao H, Chen F, Zhang M M. A systematic extraction approach for mapping glacial lakes in high mountain regions of Asia[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8):2788-2799.
doi: 10.1109/JSTARS.4609443 |
[12] |
Jiang H, Feng M, Zhu Y Q, et al. An automated method for extracting rivers and lakes from landsat imagery[J]. Remote Sensing, 2014, 6(6):5067-5089.
doi: 10.3390/rs6065067 |
[13] | 耿仁方, 付波霖, 金双根, 等. 面向对象的无人机遥感影像岩溶湿地植被遥感识别[J]. 测绘通报, 2020(11):13-18. |
[ Geng R F, Fu B L, Jin S G, et al. Object-based Karst wetland vegetation classification using UAV images[J]. Bulletin of Surveying and Mapping, 2020(11):13-18. ] | |
[14] |
Zhang W Y, Tan G X, Zheng S Y, et al. Land cover change detection in urban lake areas using multi-temporary very high spatial resolution aerial images[J]. Water, 2018, 10(2):1.
doi: 10.3390/w10020001 |
[15] |
Shen G, Yang X C, Jin Y X, et al. Land use changes in the zoige plateau based on the object-oriented method and their effects on landscape patterns[J]. Remote Sensing, 2019, 12(1):14.
doi: 10.3390/rs12010014 |
[16] |
Kettig R L, Landgrebe D A. Classification of multispectral image data by extraction and classification of homogeneous objects[J]. IEEE Transactions on Geoscience Electronics, 1976, 14(1):19-26.
doi: 10.1109/TGE.1976.294460 |
[17] | Kaplan G, Avdan U. Water extraction technique in mountainous areas from satellite images[C]// 2017:046002. |
[18] | 崔齐, 王杰, 汪闽, 等. 矢量约束的面向对象高分遥感影像水体提取[J]. 遥感信息, 2018, 33(4):115-121. |
[ Cui Q, Wang J, Wang M, et al. Water extraction from high-resolution remote sensing imagery based on vector data constraint and object-based image analysis[J]. Remote Sensing Information, 2018, 33(4):115-121. ] | |
[19] | 童李霞, 燕琴, 骆成凤, 等. 基于NDWI分割与面向对象的水体信息提取[J]. 地理空间信息, 2017, 15(5):57-59. |
[ Tong L X, Yan Q, Luo C F, et al. Water body information extraction based on NDWI segmentation and object-oriented method[J]. Geospatial Information, 2017, 15(5):57-59. ] | |
[20] | 张猛, 曾永年, 朱永森. 面向对象方法的时间序列MODIS数据湿地信息提取——以洞庭湖流域为例[J]. 遥感学报, 2017, 21(3):479-492. |
[ Zhang M, Zeng Y N, Zhu Y S. Wetland mapping of Donting Lake Basin based on time-series MODIS data and object-oriented methods[J]. Journal of Remote Sensing, 2017, 21(3):479-492. ] | |
[21] | 李艳华, 丁建丽, 闫人华. 基于国产GF-1遥感影像的山区细小水体提取方法研究[J]. 资源科学, 2015, 37(2):408-416. |
[ Li Y H, Ding J L, Yan R H. Extraction of small river information based on China-made GF-1 remote sense images[J]. Resources Science, 2015, 37(2):408-416. ] | |
[22] |
Heltin Genitha C, Sowmya M, Sri T. Comparative analysis for the detection of marine vessels from satellite images using FCM and marker-controlled watershed segmentation algorithm[J]. Journal of the Indian Society of Remote Sensing, 2020, 48(8):1207-1214.
doi: 10.1007/s12524-020-01148-x |
[23] |
Zhang M M, Ge Y H, Xue Y, et al. Identification of geomorphological hazards in an underground coal mining area based on an improved region merging watershed algorithm[J]. Arabian Journal of Geosciences, 2020, 13(9):1-12.
doi: 10.1007/s12517-019-5007-7 |
[24] | 李杰, 冯魁祥, 朱玲玲, 等. 基于阈值标记的分水岭算法遥感图像道路提取[J]. 长春大学学报, 2019, 29(6):10-14. |
[ Li J, Feng K X, Zhu L L, et al. Road extraction from remote sensing image by watershed algorithm based on threshold marker[J]. Journal of Changchun University, 2019, 29(6):10-14. ] | |
[25] | 李明华, 陈雨竹, 周淑芳, 等. 运用分水岭算法对航片数据的单木信息提取与识别[J]. 东北林业大学学报, 2019, 47(9):58-62,70. |
[ Li M H, Chen Y Z, Zhou S F, et al. Extractionand recognitionof individual treeInformation on aerial image data used watershed algorithm[J]. Journal of Northeast Forestry University, 2019, 47(9):58-62,70. ] | |
[26] |
Biswas H, Zhang K Q, Ross M S, et al. Delineation of tree patches in a mangrove-marsh transition zone by watershed segmentation of aerial photographs[J]. Remote Sensing, 2020, 12(13):2086.
doi: 10.3390/rs12132086 |
[27] |
McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
doi: 10.1080/01431169608948714 |
[28] | 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595. |
[ Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595. ] | |
[29] |
Benz U C, Hofmann P, Willhauck G, et al. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3/4):239-258.
doi: 10.1016/j.isprsjprs.2003.10.002 |
[30] |
Barbieux K, Charitsi A, Merminod B. Icy lakes extraction and water-ice classification using Landsat 8 OLI multispectral data[J]. International Journal of Remote Sensing, 2018, 39(11):3646-3678.
doi: 10.1080/01431161.2018.1447165 |
[31] | 任彦润, 张耀南, 康建芳. 2013—2017年中巴经济走廊重点区域冰川冰湖分布数据集[J]. 中国科学数据, 2019, 4(3):18-31. |
[ Ren Y R, Zhang Y N, Kang J F. A dataset of glacier and glacial lake distribution in key areas of the China-Pakistan Economic Corridor during 2013-2017[J]. China Scientific Data, 2019, 4(3):18-31. ] | |
[32] |
Wang X Y, Wang J, Jiang Z Y, et al. An effective method for snow-cover mapping of dense coniferous forests in the upper Heihe river basin using landsat operational land imager data[J]. Remote Sensing, 2015, 7(12):17246-17257.
doi: 10.3390/rs71215882 |
[33] |
Sexton J O, Song X P, Huang C Q, et al. Urban growth of the Washington, D.C. Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2013, 129:42-53.
doi: 10.1016/j.rse.2012.10.025 |
[34] |
Song X P, Sexton J O, Huang C Q, et al. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2016, 175:1-13.
doi: 10.1016/j.rse.2015.12.027 |
[35] |
Xue X J, Liu H P, Mu X D, et al. Trajectory-based detection of urban expansion using Landsat time series[J]. International Journal of Remote Sensing, 2014, 35(4):1450-1465.
doi: 10.1080/01431161.2013.878058 |
[36] |
Nie Y, Liu Q, Liu S. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010[J]. PLoS One, 2013, 8(12):e83973.
doi: 10.1371/journal.pone.0083973 |
[37] | 中国科学院计算机网络信息中心. 地理空间数据云平台[EB/OL]. http://www.gscloud.cn, 2020-08-20. |
[Computer Network Information Center, Chinese Academy of Sciences. Geospatial Data Cloud site[EB/OL]. http://www.gscloud.cn, 2020-08-20.] | |
[38] | 美国地质勘探局. 地球探索者平台[EB/OL]. https://earthexplorer.usgs.gov, 2020-09-11. |
[United States Geological Survey. EarthExplorer[EB/OL]. https://earthexplorer.usgs.gov, 2020-09-11. ] | |
[39] | 张飞, 王娟, 塔西甫拉提·特依拜, 等. 1998-2013年新疆艾比湖湖面时空动态变化及其驱动机制[J]. 生态学报, 2015, 35(9):2848-2859. |
[ Zhang F, Wang J, Tashpolat T, et al. The spatial and temporal dynamic changes and driving forces in the surface area of ebinur lake from 1998-2013[J]. Acta Ecologica Sinica, 2015, 35(9):2848-2859. ] | |
[40] | 鲍蕾, 张志, 刘亚林. 基于最佳尺度的武汉市土地覆盖景观格局分析[J]. 湖北大学学报(自然科学版), 2009, 31(2):201-205. |
[ Bao L, Zhang Z, Liu Y L. Landscape pattern analysis of Wuhan based on optimization-scale[J]. Journal of Hubei University (Natural Science), 2009, 31(2):201-205. ] |
[1] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[2] | 段艳慧, 赵学胜, 彭舒. 基于信息熵的GlobeLand 30和WorldCover耕地破碎区一致性分析[J]. 地球信息科学学报, 2023, 25(5): 1027-1036. |
[3] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[4] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[5] | 高鹏飞, 曹雪峰, 李科, 游雄. 融合多元稀疏特征与阶层深度特征的遥感影像目标检测[J]. 地球信息科学学报, 2023, 25(3): 638-653. |
[6] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[7] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[8] | 饶子昱, 卢俊, 郭海涛, 余东行, 侯青峰. 利用视角转换的跨视角影像匹配方法[J]. 地球信息科学学报, 2023, 25(2): 368-379. |
[9] | 王龙号, 蓝朝桢, 姚富山, 侯慧太, 武蓓蓓. 多源遥感影像深度特征融合匹配算法[J]. 地球信息科学学报, 2023, 25(2): 380-395. |
[10] | 甘聪聪, 邱炳文, 张建阳, 姚铖鑫, 叶智燕, 黄姮, 黄莹泽, 彭玉凤, 林艺真, 林多多, 苏中豪. 基于Sentinel-1/2动态耦合移栽期特征的水稻种植模式识别[J]. 地球信息科学学报, 2023, 25(1): 153-162. |
[11] | 伍跃飞, 李建微, 毕胜, 朱馨, 王前锋. 面向山地徒步应急救援路径规划的改进蚁群算法研究[J]. 地球信息科学学报, 2023, 25(1): 90-101. |
[12] | 于明洋, 陈肖娴, 张文焯, 刘耀辉. 融合网格注意力阀门和特征金字塔结构的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(9): 1785-1802. |
[13] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[14] | 吕爱锋, 亓珊珊. 遥感及再分析降水产品在缺资料干旱内陆盆地的适用性评估[J]. 地球信息科学学报, 2022, 24(9): 1817-1834. |
[15] | 廖周伟, 关燕宁, 郭杉, 蔡丹路, 于敏, 姚武韬, 张春燕, 邓锐. 基于网格的街区尺度城市绿度度量方法[J]. 地球信息科学学报, 2022, 24(8): 1475-1487. |
|