地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (8): 1497-1507.doi: 10.12082/dqxxkx.2021.200742
刘亚坤1(), 李永强1,*(
), 刘会云1, 孙渡2, 赵上斌1
收稿日期:
2020-12-07
修回日期:
2021-03-24
出版日期:
2021-08-25
发布日期:
2021-10-25
通讯作者:
* 李永强(1976— ),男,河南许昌人,博士,副教授,主要从事激光扫描三维建模理论与方法研究。 E-mail: liyongqiang@hpu.edu.cn作者简介:
刘亚坤(1992— ),男,河南周口人,硕士生,主要从事点云数据处理研究。E-mail: 757899220@qq.com
基金资助:
LIU Yakun1(), LI Yongqiang1,*(
), LIU Huiyun1, SUN Du2, ZHAO Shangbin1
Received:
2020-12-07
Revised:
2021-03-24
Online:
2021-08-25
Published:
2021-10-25
Contact:
LI Yongqiang
Supported by:
摘要:
屋顶模型重建影响到建筑物完整模型重建质量,屋顶面点云分割质量对屋顶模型重建具有重要意义。针对传统RANSAC算法在屋顶点云面片分割时易产生错分割、过分割等问题,本文顾及点云位置信息,提出一种对点云重新分配的改进RANSAC点云分割算法。算法暂时剔除非平面内点,选取平面内点集中3个点作为初始样本,平面拟合判定邻域是否有效,从有效邻域中选取标准差值最小的3个点为初始模型。利用RANSAC算法对屋顶点云进行分割。利用K近邻算法统计误分类点与面片的距离降低误分类,优化过分割面片并进行连通性分析,利用距离及法向量一致性检验的方法重分配非平面内点。为验证本文算法有效性,选取芬兰Helsinki地区的3栋相互独立的复杂建筑物屋顶以及上海某小区的6栋建筑物群屋顶作为实验数据。在2组数据中,本文提出的改进RANSAC算法分割屋顶面片的平均准确率分别为92.17%、87.82%,78%的建筑物屋顶不存在过分割。在第2组数据中,所有分割面片上的点与其对应的最佳拟合平面的距离的标准差的平均值为0.030 m。实验结果表明,本文算法分割建筑物屋顶面片的准确率较高,较好的抑制了过分割现象,且抗噪能力强。
刘亚坤, 李永强, 刘会云, 孙渡, 赵上斌. 基于改进RANSAC算法的复杂建筑物屋顶点云分割[J]. 地球信息科学学报, 2021, 23(8): 1497-1507.DOI:10.12082/dqxxkx.2021.200742
LIU Yakun, LI Yongqiang, LIU Huiyun, SUN Du, ZHAO Shangbin. An Improved RANSAC Algorithm for Point Cloud Segmentation of Complex Building Roofs[J]. Journal of Geo-information Science, 2021, 23(8): 1497-1507.DOI:10.12082/dqxxkx.2021.200742
[1] | 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10):1509-1516. |
[Yang B S, Liang F X, Huang R G. Research progress challenge and trend of 3D laser scanning point cloud data processing[J]. Journal of Surveying and Mapping, 2017, 46(10):1509-1516. ] | |
[2] | 景庄伟, 管海燕, 臧玉府, 等. 基于深度学习的点云语义分割研究综述[J]. 计算机科学与探索, 2021, 15(1):1-26. |
[Jing Z W, Guan H Y, Zang Y F, et al. Survey of point cloud semantic segmentation based on deep learning[J]. Computer Science and Exploration, 2021, 15(1):1-26. ] | |
[3] | 朱军桃, 王雷, 赵传, 等. 基于区域生长算法的复杂建筑物屋顶点云分割[J]. 国土资源遥感, 2019, 31(4):20-25. |
[Zhu J T, Wang L, Zhao C, et al. Segmentation of point clouds on the roof of complex buildings based on regional growth algorithm[J]. Remote Sensing of Land Resources, 2019, 31(4):20-25. ] | |
[4] | 王雯, 任小玲, 陈逍遥. 一种改进的区域增长彩色3D点云分割算法[J]. 国外电子测量技术, 2018, 37(11):10-14. |
[Wang W, Ren X L, Chen X Y. An improved region - growing color 3D point cloud segmentation algorithm is presented[J]. Foreign Electronic Measurement Technology, 2018, 37(11):10-14. ] | |
[5] | Ma X. A Fast Point Cloud Segmentation Algorithm Based on Region Growth[C]. 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China , 2019:1-2. |
[6] | Anh-Vu, Linh T H, Debra F, et al. Octree-based region growing for point cloud segmentation[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2015, 104:88-100. |
[7] |
Poz A P D, Ywata M S Y. Adaptive random sample consensus approach for segmentation of building roof in airborne laser scanning point cloud[J]. International Journal of Remote Sensing, 2019, 41(4):1-15.
doi: 10.1080/01431161.2019.1597294 |
[8] | 李云帆, 谭德宝, 刘瑞, 等. 顾及建筑物屋顶结构的改进RANSAC点云分割算法[J]. 国土资源遥感, 2017, 29(4):20-25. |
[Li Y F, Tan D B, Liu R, et al. An improved RANSAC point cloud segmentation algorithm considering the roof structure of buildings[J]. Remote Sensing of Land Resources, 2017, 29(4):20-25. ] | |
[9] |
Hamid-Lakzaeian F. Structural-based point cloud segmentation of highly ornate building faades for computational modelling[J]. Automation in Construction, 2019, 108:102892.
doi: 10.1016/j.autcon.2019.102892 |
[10] | 张强. 基于几何特征的规则激光点云分割方法研究[D]. 长沙:湖南科技大学, 2015. |
[Zhang Q. Research on regular laser point cloud segmentation based on geometric features[D]. Changsha: University of Science and Technology, Hunan, 2015. ] | |
[11] |
Li X R, Liu G S, Sun S. Efficient point cloud segmentation approach using energy optimization with geometric features for 3D scene understanding[J]. Optical Society of American, 2021, 38:60-70.
doi: 10.1364/JOSA.38.000060 |
[12] | 党吉圣, 杨军. 多特征融合的三维模型识别与分割[J]. 西安电子科技大学学报, 2020, 47(4):149-157. |
[Dang J S, Yang J. 3D model recognition and segmentation based on multi feature fusion[J]. Journal of XiDian University, 2020, 47(4):149-157. ] | |
[13] | 侯琳琳. 基于几何特征的三维点云分割算法研究[D]. 北京:北京交通大学, 2019. |
[Hou L L. Research on 3D point cloud segmentation algorithm based on geometric features[D]. Beijing: Beijing Jiao Tong University, 2019. ] | |
[14] | Saglam A, Makineci H B, Baykan Ö K, et al. Clustering-based plane refitting of non-planar patches for voxel-based 3D point cloud segmentation using K-means clustering[J]. International Information and Engineering Technology Association, 2020, 37(6):1019-1027 |
[15] | 唐泽宇. 基于泊松分布K-means聚类的点云精简算法[D]. 太原:太原理工大学, 2019. |
[Tang Z Y. Point cloud simplification algorithm based on poisson distribution K-means clustering[D]. Taiyuan: Taiyuan University of Technology, 2019. ] | |
[16] | 吴燕雄, 李峰, 刘芳, 等. 平滑度欧式聚类算法分割点云数据[J]. 测控技术, 2016, 35(3):36-38. |
[Wu Y X, Li F, Liu F, et al. Smoothness European clustering algorithm segmentation point cloud data[J]. Measurement and Control Technology, 2016, 35(3):36-38. ] | |
[17] | 高广, 马洪超, 张良. 利用合成算法从LiDAR数据提取屋顶面[J]. 武汉大学学报·信息科学版, 2014, 39(10):1225-1230. |
[Gao G, Ma H C, Zhang L. Extraction of roof surface from LiDAR data by synthetic algorithm[J]. Journal of Wuhan University (Information Science Edition), 2014, 39(10):1225-1230. ] | |
[18] | Yuan H, Sun W, Xiang T. Line laser point cloud segmentation based on the combination of RANSAC and region growing[C]. 2020 39th Chinese Control Conference (CCC), Shenyang, China , 2020:6324-6328. |
[19] | 石爱军, 白瑞林, 田青华, 等. 遗传算法结合自适应阈值约束的ICP算法[J]. 光学技术, 2018, 44(1):63-68. |
[Shi A J, Bai R L, Tian Q H, et al. ICP algorithm based on genetic algorithm combined with adaptive threshold constraint[J]. Optical Technology, 2016, 44(1):63-68 ] | |
[20] | 陈付幸, 王润生. 基于预检验的快速随机抽样一致性算法[J]. 软件学报, 2005(8):1431-1437. |
[Chen F X, Wang R S. Rapid random sampling consistency algorithm based on pre-test[J]. Journal of Software, 2005(8):1431-1437. ] | |
[21] | Dal Poz A P, Sayuri Yano M. RANSAC-based segmentation for building roof face detection in LiDAR point cloud[C]. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018:1276-1279. |
[22] |
Xu B, Jiang W S, Shan J, et al. Investigation on the weighted RANSAC approaches for building roof plane segmentation from LiDAR point clouds[J]. Remote Sensing, 2016, 8(1):5.
doi: 10.3390/rs8010005 |
[23] | 兰军. LiDAR点云中实时平面检测算法研究与实现[D]. 北京:北方工业大学, 2019. |
[Lan J. Research and implementation of real-time plane detection algorithm in LiDAR point cloud[D]. Beijing: North China University of Technology, 2019. ] | |
[24] | 张宏伟, 姜超, 张保明, 等. 基于局部约束的建筑物屋顶点云平面分割方法[J]. 测绘科学技术学报, 2017, 34(3):274-278. |
[Zhang H W, Jiang C, Zhang B M, et al. Segmentation method of roof point cloud plane based on local constraint[J]. Journal of Surveying and Mapping, 2017, 34(3):274-278. ] | |
[25] |
Li L, Yang F, Zhu H, et al. An improved RANSAC for 3D point cloud plane segmentation based on normal distribution transformation cells[J]. Remote Sensing, 2017, 9(5):433.
doi: 10.3390/rs9050433 |
[26] | Xu Dong, Li Fang Hui, Wei Hong Xing. 3D point cloud plane segmentation method based on RANSAC and support vector machine[C]. 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi'an, China , 2019:943-948. |
[27] |
Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395.
doi: 10.1145/358669.358692 |
[28] | Brenner C, Haala N, Norbert. Rapid acquisition of virtual reality city models from multiple data sources[J]. International Archives of Photogrammetry and Remote Sensing, 1998, 32(5):323-330. |
[29] | Milde J, Brenner C. Graph-based modeling of building roofs[C]. 12th AGILE Conference on GIScience, Hannover, Germany . 2009. |
[30] | Kada M McKinley L. 3D building reconstruction from LiDAR based on a cell decomposition approach[J]. International Archives of Photogrammetry and Remote Sensing, 2009, 37(3):47-52. |
[31] |
Chen D, Zhang L Q, Li J, et al. Urban building roof segmentation from airborne LiDAR point cloud[J]. International Journal of Remote Sensing, 2012, 33(20):6497-6515.
doi: 10.1080/01431161.2012.690083 |
[32] | 徐博. 基于航空LiDAR数据的建筑物屋顶面三维重建关键技术研究[D]. 武汉:武汉大学, 2017. |
[Xu B. Research on key technologies of 3D reconstruction of building roof surface based on aviation LiDAR data[D]. Wuhan: Wuhan University, 2017. ] | |
[33] |
Gallo O, Manduchi R, Rafii A. CC-RANSAC: Fitting planes in the presence of multiple surfaces in range data[J]. Pattern Recognition Letters, 2011, 32(3):403-410.
doi: 10.1016/j.patrec.2010.10.009 |
[1] | 张海清, 李向新, 王成, 习晓环, 王濮, 陈正宇. 结合DSM的机载LiDAR单木树高提取研究[J]. 地球信息科学学报, 2021, 23(10): 1873-1881. |
[2] | 王广帅, 万一, 张永军. 交叉点结构特征约束的机载LiDAR点云与多视角航空影像配准[J]. 地球信息科学学报, 2020, 22(9): 1868-1877. |
[3] | 陶鹏杰, 宋孟肖, 段延松. 利用高精度DLG进行机载LiDAR点云精度评定研究[J]. 地球信息科学学报, 2019, 21(4): 608-614. |
[4] | 刘凯斯, 王彦兵, 宫辉力, 李小娟, 余洁. 机载LiDAR点云数据的二面角滤波算法[J]. 地球信息科学学报, 2018, 20(4): 414-421. |
[5] | 鲁林, 周小成, 余治忠, 韩尚, 汪小钦. 随机森林算法在机载LiDAR数据林分平均树高 估算中的应用研究[J]. 地球信息科学学报, 2016, 18(8): 1133-1140. |
[6] | 邓富亮, 杨崇俊, 曹春香, 范协裕. 高分辨率影像分割的分形网络演化改进方法[J]. 地球信息科学学报, 2014, 16(1): 95-101. |
[7] | 姜文聪, 张继贤, 程春泉, 梁勇. SIFT与粗差剔除算法相结合的机载SAR影像匹配研究[J]. 地球信息科学学报, 2013, 15(3): 440-444. |
|