地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (10): 1767-1777.doi: 10.12082/dqxxkx.2021.210016

• 地球信息科学理论与方法 • 上一篇    下一篇

Douglas-Peucker算法全自动化的多尺度空间相似关系方法

王荣1,2,3(), 闫浩文1,3,*(), 禄小敏1,3   

  1. 1.兰州交通大学测绘与地理信息学院,兰州 730070
    2.天水师范学院资源与环境工程学院,天水 741001
    3.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
  • 收稿日期:2021-01-12 修回日期:2021-03-12 出版日期:2021-10-25 发布日期:2021-12-25
  • 通讯作者: * 闫浩文(1969—),甘肃民勤人,博士,“长江学者”特聘教授,主要从事地图综合及多尺度空间理论研究。E-mail: haowen2010@gmail.com
  • 作者简介:王 荣(1986— ),女,甘肃天水人,博士生,主要从事多尺度空间相似关系研究。E-mail: freefly_99@126.com
  • 基金资助:
    国家自然科学基金项目(41930101);国家自然科学基金青年基金项目(41801395);甘肃省教育厅创新基金项目(2021A-110)

Automation of the Douglas-Peucker Algorithm based on Spatial Similarity Relations

WANG Rong1,2,3(), YAN Haowen1,3,*(), LU Xiaomin1,3   

  1. 1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
    2. College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741001, China
    3. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
  • Received:2021-01-12 Revised:2021-03-12 Online:2021-10-25 Published:2021-12-25
  • Supported by:
    Youth Foundation of National Natural Science Foundation of China(41930101);Youth Foundation of National Natural Science Foundation of China(41801395);Innovation Foundation of Education Department of Gansu(2021A-110)

摘要:

地图综合本质上是空间相似变换,研究Douglas-Peucker算法及其参数的设置,实质是研究算法的最佳距离阈值与尺度变化间的定量关系,但目前二者关系未知,导致参数设置及化简结果的选择主观性强。为此,提出以多尺度线要素空间相似关系为契合点,利用阈值参数寻优原理确定二者间定量关系,以实现基于DP算法线要素的全自动化简。结果表明:① 二次函数是描述最佳距离阈值与尺度变化间定量关系的最优函数;② 针对来源于相同地理特征区,如长江下游平原,的线要素可行,利用同一最佳距离阈值可实现基于DP算法线要素的全自动化简,且化简结果与已有成果数据吻合度较高;而来源于不同地理特征区域,如长江下游平原和江淮平原,的线要素,用同一最佳距离阈值化简是不合理。因此,应选择不同的最佳距离阈值,以实现不同地理特征区域线要素的DP算法全自动化简。

关键词: 地图综合, 空间相似关系, 尺度变化, 参数寻优, 几何精度, Douglas-Peucker算法, 地理特征, 最佳距离阈值

Abstract:

Map generalization is in essence a spatial similarity transformation of maps. Studying the Douglas-Peucker algorithm and its parameter setting is in essence studying the relationship between the optimal distance threshold of the algorithm and map scale change. However, the quantitative relationship between them is still unknown, which leads to strong subjectivity in parameter setting and selection of simplification results. Therefore, in order to realize the automated simplification of polyline based on DP algorithm, this paper proposes to take the spatial similarity evaluation model of multi-scale polylines as the coincidence point, and determine the quantitative relationship between them using the principle of threshold parameter optimization. The results indicate that quadratic function is the optimal function to describe the quantitative relationship between the optimal distance threshold and map scale change. It is feasible to use the same optimal distance to automatically simplify the polylines from the same geographical feature area based on the Douglas-Peucker algorithm, such as the polylines from the Lower Yangtze River plain. The simplification results match well with the existing target scale data. However, it is unreasonable to use the same optimal distance threshold to simplify the polylines from different geographical feature areas, such as polylines from the Lower Yangtze River plain and the Jianghuai plain. Therefore, different optimal distance thresholds should be selected to realize full automated simplification of DP algorithm for polylines from different geographical feature areas.

Key words: map generalization, spatial similarity relations, map scale change, parameter optimization, geometric accuracy, Douglas-Peucker algorithm, geographic feature, optimal distance threshold