地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (10): 1767-1777.doi: 10.12082/dqxxkx.2021.210016
收稿日期:
2021-01-12
修回日期:
2021-03-12
出版日期:
2021-10-25
发布日期:
2021-12-25
通讯作者:
* 闫浩文(1969—),甘肃民勤人,博士,“长江学者”特聘教授,主要从事地图综合及多尺度空间理论研究。E-mail: haowen2010@gmail.com作者简介:
王 荣(1986— ),女,甘肃天水人,博士生,主要从事多尺度空间相似关系研究。E-mail: freefly_99@126.com
基金资助:
WANG Rong1,2,3(), YAN Haowen1,3,*(
), LU Xiaomin1,3
Received:
2021-01-12
Revised:
2021-03-12
Online:
2021-10-25
Published:
2021-12-25
Supported by:
摘要:
地图综合本质上是空间相似变换,研究Douglas-Peucker算法及其参数的设置,实质是研究算法的最佳距离阈值与尺度变化间的定量关系,但目前二者关系未知,导致参数设置及化简结果的选择主观性强。为此,提出以多尺度线要素空间相似关系为契合点,利用阈值参数寻优原理确定二者间定量关系,以实现基于DP算法线要素的全自动化简。结果表明:① 二次函数是描述最佳距离阈值与尺度变化间定量关系的最优函数;② 针对来源于相同地理特征区,如长江下游平原,的线要素可行,利用同一最佳距离阈值可实现基于DP算法线要素的全自动化简,且化简结果与已有成果数据吻合度较高;而来源于不同地理特征区域,如长江下游平原和江淮平原,的线要素,用同一最佳距离阈值化简是不合理。因此,应选择不同的最佳距离阈值,以实现不同地理特征区域线要素的DP算法全自动化简。
王荣, 闫浩文, 禄小敏. Douglas-Peucker算法全自动化的多尺度空间相似关系方法[J]. 地球信息科学学报, 2021, 23(10): 1767-1777.DOI:10.12082/dqxxkx.2021.210016
WANG Rong, YAN Haowen, LU Xiaomin. Automation of the Douglas-Peucker Algorithm based on Spatial Similarity Relations[J]. Journal of Geo-information Science, 2021, 23(10): 1767-1777.DOI:10.12082/dqxxkx.2021.210016
[1] | Yan H W, Li J. Concepts of spatial similarity relations in multiscale map spaces[M]//Spatial Similarity Relations in Multi-scale Map Spaces. Cham: Springer International Publishing, 2014:45-80. |
[2] |
McMaster R B. Automated line generalization[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1987, 24(2):74-111.
doi: 10.3138/3535-7609-781G-4L20 |
[3] |
Ai T H, Ke S, Yang M, et al. Envelope generation and simplification of polylines using Delaunay triangulation[J]. International Journal of Geographical Information Science, 2017, 31(2):297-319.
doi: 10.1080/13658816.2016.1197399 |
[4] |
Shen Y L, Ai T H, Wang L, et al. A new approach to simplifying polygonal and linear features using superpixel segmentation[J]. International Journal of Geographical Information Science, 2018, 32(10):2023-2054.
doi: 10.1080/13658816.2018.1485926 |
[5] |
Kronenfeld B J, Stanislawski L V, Buttenfield B P, et al. Simplification of polylines by segment collapse: Minimizing areal displacement while preserving area[J]. International Journal of Cartography, 2020, 6(1):22-46.
doi: 10.1080/23729333.2019.1631535 |
[6] | Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[M]//Classics in Cartography. Chichester, UK: John Wiley & Sons, Ltd, 2011:15-28. |
[7] |
Li Z L, Openshaw S. Algorithms for automated line generalization1 based on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5):373-389.
doi: 10.1080/02693799208901921 |
[8] | 钱海忠, 何海威, 王骁, 等. 采用三元弯曲组划分的线要素化简方法[J]. 武汉大学学报·信息科学版, 2017, 42(8):1096-1103. |
[ Qian H Z, He H W, Wang X A, et al. Line feature simplification method based on bend group division[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1096-1103. ] | |
[9] |
Ramer U. An iterative procedure for the polygonal approximation of plane curves[J]. Computer Graphics and Image Processing, 1972, 1(3):244-256.
doi: 10.1016/S0146-664X(72)80017-0 |
[10] |
Yan H W. Quantitative relations between spatial similarity degree and map scale change of individual linear objects in multi-scale map spaces[J]. Geocarto International, 2015, 30(4):472-482.
doi: 10.1080/10106049.2014.902115 |
[11] |
Yan H W, Shen Y Z, Li J. Approach to calculating spatial similarity degrees of the same river basin networks on multi-scale maps[J]. Geocarto International, 2016, 31(7):765-782.
doi: 10.1080/10106049.2015.1076063 |
[12] |
Chehreghan A, Ali Abbaspour R. An assessment of spatial similarity degree between polylines on multi-scale, multi-source maps[J]. Geocarto International, 2017, 32(5):471-487.
doi: 10.1080/10106049.2016.1155659 |
[13] |
Li Z L, Sui H G. An integrated technique for automated generalization of contour maps[J]. The Cartographic Journal, 2000, 37(1):29-37.
doi: 10.1179/caj.2000.37.1.29 |
[14] | 王家耀, 何宗宜, 蒲英霞. 地图学[M]. 北京: 测绘出版社, 2016. |
[ Wang J Y, He Z Y, Pu Y X. Cartography[M]. Beijing: Sino Maps Press, 2016. ] | |
[15] |
Chehreghan A, Ali Abbaspour R. An assessment of the efficiency of spatial distances in linear object matching on multi-scale, multi-source maps[J]. International Journal of Image and Data Fusion, 2018, 9(2):95-114.
doi: 10.1080/19479832.2017.1369175 |
[16] | 何海威, 钱海忠, 段佩祥, 等. 线要素化简及参数自动设置的案例推理方法[J]. 武汉大学学报·信息科学版, 2020, 45(3):344-352. |
[ He H W, Qian H Z, Duan P X, et al. Automatic line simplification algorithm selecting and parameter setting based on case-based reasoning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):344-352. ] | |
[17] |
McMaster R B. A statistical analysis of mathematical measures for linear simplification[J]. The American Cartographer, 1986, 13(2):103-116.
doi: 10.1559/152304086783900059 |
[18] |
Anderson D L, Ames D P, Yang P. Quantitative methods for comparing different polyline stream network models[J]. Journal of Geographic Information System, 2014, 6(2):88-98.
doi: 10.4236/jgis.2014.62010 |
[19] |
Fan H C, Zipf A, Fu Q, et al. Quality assessment for building footprints data on OpenStreetMap[J]. International Journal of Geographical Information Science, 2014, 28(4):700-719.
doi: 10.1080/13658816.2013.867495 |
[20] |
Fan H C, Yang B S, Zipf A, et al. A polygon-based approach for matching OpenStreetMap road networks with regional transit authority data[J]. International Journal of Geographical Information Science, 2016, 30(4):748-764.
doi: 10.1080/13658816.2015.1100732 |
[21] | Li B N, Fonseca F. TDD: A comprehensive model for qualitative spatial similarity assessment[J]. Spatial Cognition & Computation, 2006, 6(1):31-62. |
[22] | Zhang M. Methods and implementations of road-network matching[EB/OL]. 2009. |
[23] | 武芳, 朱鲲鹏. 线要素化简算法几何精度评估[J]. 武汉大学学报·信息科学版, 2008, 33(6):600-603. |
[ Wu F, Zhu K P. Geometric accuracy assessment of linear features' simplification algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):600-603. ] | |
[24] | 顾腾, 陈晓勇, 刘成强. 一种Douglas-Peucker与Li-Openshaw结合改进的曲线化简方法[J]. 东华理工大学学报(自然科学版), 2016, 39(4):396-400. |
[ Gu T, Chen X Y, Liu C Q. A modified line simplification method combined Douglas-peucker with Li-openshaw[J]. Journal of East China University of Technology (Natural Science), 2016, 39(4):396-400. ] | |
[25] | 陈竞男, 钱海忠, 王骁, 等. 提高线要素匹配率的动态化简方法[J]. 测绘学报, 2016, 45(4):486-493. |
[ Chen J N, Qian H Z, Wang X A, et al. Improving the matching rate of line feature by using dynamic simplification[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):486-493. ] | |
[26] | 郭仁忠. 空间分析(2版)[M]. 北京: 高等教育出版社, 2001. |
[ Guo R Z. Spacial analysis[M]. Beijing: Higher Education Press, 2001. ] | |
[27] |
White E R. Assessment of line-generalization algorithms using characteristic points[J]. The American Cartographer, 1985, 12(1):17-28.
doi: 10.1559/152304085783914703 |
[28] | 李成名, 郭沛沛, 殷勇, 等. 一种顾及空间关系约束的线化简算法[J]. 测绘学报, 2017, 46(4):498-506. |
[ Li C M, Guo P P, Yin Y, et al. A line simplification algorithm considering spatial relations between two lines[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4):498-506. ] | |
[29] | Joao E M. Causes and consequences of map generalization[M]. London: Taylor and Francis, 1998. |
[1] | 金澄, 安晓亚, 崔海福, 赵宇君, 王惠. 矢量瓦片地图线化简算法研究[J]. 地球信息科学学报, 2019, 21(10): 1502-1509. |
[2] | 徐智邦, 王中辉, 闫浩文, 武芳, 段晓旗, 孙立. 结合POI数据的道路自动选取方法[J]. 地球信息科学学报, 2018, 20(2): 159-166. |
[3] | 杜世宏, 雒立群, 赵文智, 郭舟. 多尺度空间关系研究进展[J]. 地球信息科学学报, 2015, 17(2): 135-146. |
[4] | 张栋海, 黄丽娜, 刘晖, 唐健. 基于MapReduce的多机并行DP算法与实验分析[J]. 地球信息科学学报, 2013, 15(1): 55-60. |
[5] | 李爱勤, 李德仁, 龚健雅, 邓轶. GIS的空间数据多比例尺表达与处理概念框架[J]. 地球信息科学学报, 2009, 11(5): 645-651. |
[6] | 许珺. 对于线状地理特征空间关系的自然语言理解[J]. 地球信息科学学报, 2008, 10(3): 363-369. |
[7] | 王美珍, 沈婕, 苏昆. 移动环境中居民地综合算法的应用[J]. 地球信息科学学报, 2008, 10(2): 171-176. |
|