地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (8): 1362-1371.doi: 10.12082/dqxxkx.2021.210041
收稿日期:
2021-01-25
修回日期:
2021-02-08
出版日期:
2021-08-25
发布日期:
2021-10-25
通讯作者:
邓祥征
作者简介:
张 帆(1989— ),男,河北张家口人,博士,助理研究员,主要从事环境与生态管理、气候变化应对等领域的研究。E-mail: zhangf.ccap@igsnrr.ac.cn
基金资助:
ZHANG Fan1,3(), XUAN Xin2, DENG Xiangzheng1,3,*(
)
Received:
2021-01-25
Revised:
2021-02-08
Online:
2021-08-25
Published:
2021-10-25
Contact:
DENG Xiangzheng
Supported by:
摘要:
在气候变化和全球治理挑战日益严峻的背景下,CO2排放及代价评估日益受到学术界和决策者的关注。当前全球范围包括联合国政府间气候变化专门委员会(IPCC)评估在内的几乎所有研究都是基于全球平均CO2浓度来驱动气候模式的,但基于全球CO2平均分布设定开展模拟影响评估在学术界多有争议。首先,综述了大气CO2非均匀分布的证据,评述了大气CO2浓度非均匀分布与地表升温过程的互馈机制。其次,从自然和人为2个维度,梳理了大气CO2浓度非均匀分布形成的原因,并评估了其对地表升温的影响。最后,评述了当前大气CO2浓度非均匀分布研究中存在的问题,进一步展望了其发展趋势,为把握全球与区域碳排放现状及气候变化影响提供科学判据。
张帆, 宣鑫, 邓祥征. 大气CO2浓度非均匀分布及其对地表升温影响的研究进展与展望[J]. 地球信息科学学报, 2021, 23(8): 1362-1371.DOI:10.12082/dqxxkx.2021.210041
ZHANG Fan, XUAN Xin, DENG Xiangzheng. Research Progress and Prospect on the Non-Uniform Distribution of Atmospheric CO2 Concentration and its Influence on Surface Warming[J]. Journal of Geo-information Science, 2021, 23(8): 1362-1371.DOI:10.12082/dqxxkx.2021.210041
表1
我国WMO/GAW本底观测站自然、生态特征及区域代表性
站点名称 | 站点类型 | 纬度/N | 经度/E | 气候特征 | 代表区域 | 据市中心距离 |
---|---|---|---|---|---|---|
瓦里关(WLG) | 全球本底站 | 36°17′ | 100°54′ | 高原大陆性 | 欧亚大陆腹地 | 距西宁市150 km |
上甸子(SDZ) | 区域本底站 | 40°39′ | 117°07′ | 暖温带半湿润季风 | 京津冀经济圈 | 距北京市150 km |
临安(LAN) | 区域本底站 | 30°18′ | 119°44′ | 亚热带季风 | 长三角经济圈 | 距杭州市50 km |
龙凤山(LFS) | 区域本底站 | 44°44′ | 127°36′ | 温带大陆性季风 | 东北平原区 | 距哈尔滨市180 km |
香格里拉(XGLL) | 区域本底站 | 28°00′ | 99°44′ | 高原寒温性湿润 | 青藏高原横断山区腹地 | 距昆明市450 km |
阿克达拉(AKDL) | 区域本地站 | 47°06′ | 87°58′ | 大陆性温带干旱半干旱 | 北疆地区 | 距乌鲁木齐市400 km |
表2
大气CO2浓度非均匀分布数值模拟研究常用模型/模式
模式/模型名称 | 模式简介 | 优势 |
---|---|---|
WRF-GHG模式 | 由中尺度天气研究与预报模式WRF与植被光合呼吸模型VPRM直接动态耦合的大气-温室气体模式 | 能直接计算陆地生态系统与大气中之间温室气体的相互交换,考虑大气中的扩散、输送等过程对温室气体的影响,模拟和预报温室气体在时间和空间上的分布和演变[ |
区域碳数据同化系统 | 将集合四维变分数据同化方法(POD-4DVar)融入通用多尺度空气质量(Community Multiscal Air Quality)区域化学输送模型 | 可以持续、动态描述地表CO2通量演变并避免信噪比问题,使CO2通量可以在网格尺度上作为一个整体参与估计[ |
CESM模式 | 由一个中央耦合器和大气模型、海洋模型、陆地模型、海冰模型和冰盖模型组成,不同圈层之间采用耦合方式进行交互 | 开放获取源代码,且采用国际上主流的模块化结构,便于更换或升级分量和开发新的气候模型产品[ |
RAMS-CMAQ模式 | 由区域大气模拟系统RAMS和环境空气质量模型Modoles-3 CMAQ构成 | 通过VPRM模块,综合考虑了陆地生态系统中植被光合作用和呼吸作用对CO2通量的影响,能够模拟CO2迁移和扩散的物理过程[ |
区域气候模式REMO | 由德国气象局(DWD)的EM (Europa Modell)发展而来,研究区域限定在欧洲和西西伯利亚 | 拥有“气候模式”和“预报模式” 2种工作模式,能够对天气和次天气特征进行可靠模拟[ |
碳追踪模型 | 将TM5(Tracer Model, Version 5)大气传输模型与卡尔曼滤波方法相结合,是由NOAA/ESRL/GMD开发的一种大气反演模型 | 能够模拟地球表面CO2吸收和排放随时间的变化,区分自然碳循环和人类活动引起的碳排放变化[ |
改进的区域气候模式RegCM4 | 将CO2源和汇视为规定的表面通量并对其进行追踪 | 具有较高的空间分辨率,可以从人为排放和生物圈-大气交换中检索信号,从而捕捉环境CO2浓度时空变化[ |
[1] | 翟盘茂. 全球变暖背景下的气候服务[J]. 气象, 2011, 37(3):257-262. |
[Zhai P M. Climate service under climate warming background[J]. Meteorological Monthly, 2011, 37(3):257-262. ] | |
[2] | 徐冠华, 葛全胜, 宫鹏, 等. 全球变化和人类可持续发展:挑战与对策[J]. 科学通报, 2013, 58(21):2100-2106. |
[Xu G H, Ge Q S, Gong P, et al. Societal response to challenges of global change and human sustainable development[J]. Chinese Science Bulletin, 2013, 58(21):2100-2106. ] | |
[3] | 葛全胜, 王芳, 王绍武, 等. 对全球变暖认识的七个问题的确定与不确定性[J]. 中国人口·资源与环境, 2014, 24(1):1-6. |
[Ge Q S, Wang F, Wang S, et al. Certainty and uncertainty in global warming studies[J]. China Population, Resources and Environment, 2014, 24(1):1-6. ] | |
[4] | 方精云, 朱江玲, 王少鹏, 等. 全球变暖、碳排放及不确定性[J]. 中国科学:地球科学, 2011, 41(10):1385-1395. |
[Fang J Y, Zhu J L, Wang S P, et al. Global warming, human-induced carbon emissions, and their uncertainties[J]. SCIENTIA SINICA Terrae, 2011, 41(10):1385-1395. ] | |
[5] |
Steinberger J K, Roberts J T, Peters G P, et al. Pathways of human development and carbon emissions embodied in trade[J]. Nature Climate Change, 2012, 2(2):81-85.
doi: 10.1038/nclimate1371 |
[6] | Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis[R]. Cambridge, United Kingdom and New York, USA: 2013 |
[7] |
Cherubini F, Gasser T, Bright R M, et al. Linearity between temperature peak and bioenergy CO2 emission rates[J]. Nature Climate Change, 2014, 4(11):983-987.
doi: 10.1038/nclimate2399 |
[8] |
Leduc M, Matthews H D, de Elía R. Regional estimates of the transient climate response to cumulative CO2 emissions[J]. Nature Climate Change, 2016, 6(5):474-478.
doi: 10.1038/NCLIMATE2913 |
[9] |
Williams R G, Roussenov V, Goodwin P, et al. Sensitivity of global warming to carbon emissions: Effects of heat and carbon uptake in a suite of Earth system models[J]. Journal of Climate, 2017, 30(23):9343-9363.
doi: 10.1175/JCLI-D-16-0468.1 |
[10] |
Li B, Gasser T, Ciais P, et al. The contribution of China's emissions to global climate forcing[J]. Nature, 2016, 531(7594):357-361.
doi: 10.1038/nature17165 |
[11] | 吴国雄, 林海, 邹晓蕾, 等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1):15-22. |
[Wu G X, Lin H, Zou X L, et al. Research on global climate change and scientific data[J]. Advances in Earth Science, 2014, 29(1):15-22. ] | |
[12] |
Basu S, Krol M, Butz A, et al. The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI[J]. Geophysical Research Letters, 2014, 41(5):1809-1815.
doi: 10.1002/2013GL059105 |
[13] | 陈卓奇, 陈镜明, 郑小谷, 等. 基于大气反演陆地碳通量季节变化信息的模型参数优化研究[J]. 科学通报, 2015, 60(34):3397. |
[Chen Z Q, Chen J M, Zheng X G, et al. Optimizing photosynthetic and respiratory parameters based on the seasonal variation pattern in regional net ecosystem productivity obtained from atmospheric inversion[J]. Chinese Science Bulletin, 2015, 60(34):3397. ] | |
[14] |
Friedlingstein P, Meinshausen M, Arora V K, et al. Uncertainties in CMIP 5 climate projections due to carbon cycle feedbacks[J]. Journal of Climate, 2014, 27(2):511-526.
doi: 10.1175/JCLI-D-12-00579.1 |
[15] |
Williams R G, Roussenov V, Goodwin P, et al. Sensitivity of global warming to carbon emissions: Effects of heat and carbon uptake in a suite of Earth system models[J]. Journal of Climate, 2017, 30(23):9343-9363.
doi: 10.1175/JCLI-D-16-0468.1 |
[16] |
Briegleb B P. Delta eddington approximation for solar radiation in the NCAR Community Climate Model[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D7):7603-7612.
doi: 10.1029/92JD00291 |
[17] |
Lobell D B, Burke M B. On the use of statistical models to predict crop yield responses to climate change[J]. Agricultural and forest meteorology, 2010, 150(11):1443-1452.
doi: 10.1016/j.agrformet.2010.07.008 |
[18] |
Pruess K. Numerical simulation of CO2 leakage from a geologic disposal reservoir including transitions from super-to sub-critical conditions, and boiling of liquid of CO2[J]. SPE Journal, 2003, 9(2):237-248.
doi: 10.2118/86098-PA |
[19] |
Xu T, Apps J A, Pruess K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 2004, 19(6):917-936.
doi: 10.1016/j.apgeochem.2003.11.003 |
[20] |
Wang Y, Feng J, Dan L, et al. The impact of uniform and nonuniform CO2 concentrations on global climatic change[J]. Theoretical and Applied Climatology, 2020, 139(1-2):45-55.
doi: 10.1007/s00704-019-02924-7 |
[21] | 符传博, 丹利, 冯锦明, 等. 我国对流层二氧化碳非均匀动态分布特征及其成因[J]. 地球物理学报, 2018, 61(11):4373-4382. |
[Fu C B, Dan L, Feng J M, et al. Temporal and spatial heterogeneous distribution of tropospheric CO2 over China and its possible genesis [J]. Chinese Journal of Geophysics, 2018, 61(11):4373-4382. ] | |
[22] | 刘立新, 周凌晞, 张晓春, 等. 我国4个国家级本底站大气CO2浓度变化特征[J]. 中国科学(D辑:地球科学), 2009, 39(2):222-228. |
[Liu L X, Zhou L X, Zhang X C, et al. Variation characteristics of atmospheric CO2 concentration at four national background stations in China [J]. Science in China Series D: Earth Sciences, 2009, 39(2):222-228. ] | |
[23] |
Cheng Y L, Aa X Q, Yun F H, et al. Simulation of CO2 variations at Chinese background atmospheric monitoring stations between 2000 and 2009: Applying a Carbon Tracker model[J]. Chinese Science Bulletin, 2013, 58(32):3986-3993.
doi: 10.1007/s11434-013-5895-y |
[24] | 杨成荫, 王汉杰, 韩士杰, 等. 大气CO2浓度非均匀动态分布条件下的气候模拟[J]. 地球物理学报, 2012, 55(9):2809-2825. |
[Yang C Y, Wang H J, Han S J, et al. Climate simulation for dynamic heterogeneous distribution of atmospheric CO2 concentration [J]. Chinese Journal of Geophysics, 2012, 55(9):2809-2825. ] | |
[25] | Zhang X, Li X, Chen D, et al. Overestimated climate warming and climate variability due to spatially homogeneous CO2 in climate modeling over the Northern Hemisphere since the mid-19th century[J]. Scientific reports, 2019, 9(1):1-9. |
[26] | Liu N, Ma J, Xu W, et al. A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China[J]. Atmospheric Environment, 2020: 117672. |
[27] | 周凌晞, 刘立新, 张晓春, 等. 我国温室气体本底浓度网络化观测的初步结果[J]. 应用气象学报, 2008, 19(6):641-645. |
[Zhou L X, Liu L X, Zhang X C, et al. Preliminary results on network observation of greenhouse gases at China GAW stations[J]. Journal of Applied Meteorological Science, 2008, 19(6):641-645. ] | |
[28] |
Fang S X, Zhou L X, Tans P P, et al. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China[J]. Atmospheric Chemistry and Physics, 2014, 14(5):2541-2554.
doi: 10.5194/acp-14-2541-2014 |
[29] |
Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831):720-723.
doi: 10.1038/s41586-020-2849-9 |
[30] | 岳超, 胡雪洋, 贺灿飞, 等. 1995—2007年我国省区碳排放及碳强度的分析——碳排放与社会发展Ⅲ[J]. 北京大学学报(自然科学版), 2010, 46(4):510-516. |
[Yue C, Hu X Y, He C F, et al. Provincial carbon emissions and carbon intensity in China from 1995 to 2007 (Carbon emissions and social development, Ⅲ)[J]. Acta Scientiarum Naturalium University Pekinensis, 2010, 46(4):510-516. ] | |
[31] | 张兴赢, 张鹏, 方宗义, 等. 应用卫星遥感技术监测大气痕量气体的研究进展[J]. 气象, 2007(7):3-14. |
[Zhang X Y, Zhang P, Fang Z Y, et al. The progress in trace gas remote sensing study based on the satellite monitoring[J]. Meteorological Monthly, 2007(7):3-14. ] | |
[32] | 刁一伟, 黄建平, 刘诚, 等. 长江三角洲地区净生态系统二氧化碳通量及浓度的数值模拟[J]. 大气科学, 2015, 39(5):849-860. |
[Diao Y W, Huang J P, Liu C, et al. A modeling study of CO2 flux and concentrations over the Yangtze River Delta using the WRF-GHG model [J]. Chinese Journal of Atmospheric Sciences, 2015, 39(5):849-860. ] | |
[33] |
Pillai D, Buchwitz M, Gerbig C, et al. Tracking city CO2 emissions from space using a high-resolution inverse modeling approach: A case study for Berlin, Germany[J]. Atmospheric Chemistry and Physics, 2016, 16(15):9591-9610.
doi: 10.5194/acp-16-9591-2016 |
[34] |
Zhao X, Marshall J, Hachinger S, et al. Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG[J]. Atmospheric Chemistry and Physics, 2019, 19(17):11279-11302.
doi: 10.5194/acp-19-11279-2019 |
[35] |
Kou X, Tian X, Zhang M, et al. Accounting for CO2 variability over East Asia with a regional joint inversion system and its preliminary evaluation[J]. Journal of Meteorological Research, 2017, 31(5):834-851.
doi: 10.1007/s13351-017-6149-8 |
[36] | Afrizal T, Surussavadee C. High-Resolution climate simulations in the tropics with complex terrain employing the CESM/WRF Model[J]. Advances in Meteorology, 2018:1-15. |
[37] | Navarro A, Moreno R, Tapiador F J. Improving the representation of anthropogenic CO2 emissions in climate models: A new parameterization for the Community Earth System Model (CESM)[J]. Earth System Dynamics Discussions, 2018:1-26. |
[38] |
Keppel-Aleks G, Randerson J T, Lindsay K, et al. Atmospheric carbon dioxide variability in the Community Earth System Model: Evaluation and transient dynamics during the twentieth and twenty-first centuries[J]. Journal of Climate, 2013, 26(13):4447-4475.
doi: 10.1175/JCLI-D-12-00589.1 |
[39] |
Huang Z, Peng Z, Liu H, et al. Development of CMAQ for East Asia CO2 data assimilation under an EnKF framework: A first result[J]. Chinese science bulletin, 2014, 59(25):3200-3208.
doi: 10.1007/s11434-014-0348-9 |
[40] |
Li R, Zhang M, Chen L, et al. CMAQ simulation of atmospheric CO2 concentration in East Asia: Comparison with GOSAT observations and ground measurements[J]. Atmospheric Environment, 2017, 160:176-185.
doi: 10.1016/j.atmosenv.2017.03.056 |
[41] |
Kou X, Zhang M, Peng Z. Numerical simulation of CO2 concentrations in East Asia with RAMS-CMAQ[J]. Atmospheric and Oceanic Science Letters, 2013, 6(4):179-184.
doi: 10.1080/16742834.2013.11447077 |
[42] |
Chevillard A, Karstens U, Ciais P, et al. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO[J]. Tellus B: Chemical and Physical Meteorology, 2002, 54(5):872-894.
doi: 10.3402/tellusb.v54i5.16737 |
[43] | 麦博儒, 邓雪娇, 安兴琴, 等. 基于碳源汇模式系统Carbon Tracker的广东省近地层典型CO2过程模拟研究[J]. 环境科学学报, 2014, 34(7):1833-1844. |
[Mai B R, Deng X J, An X Q, et al. Simulation of typical surface CO2 cases over Guangdong region base on Carbon Tracker numerical model [J]. Acta Scientiae Circumstantiae, 2014, 34(7):1833-1844.] | |
[44] |
Xie X, Huang X, Wang T, et al. Simulation of Non-Homogeneous CO2 and Its Impact on Regional Temperature in East Asia[J]. Journal of Meteorological Research, 2018, 32(3):456-468.
doi: 10.1007/s13351-018-7159-x |
[45] |
Yang C Y, Wang H J, Zhao S X, et al. Exaggerated climate warming on the assumption of uniform atmospheric CO2 concentration[J]. Applied Ecology and Environmental Research, 2018, 16:3711-3728.
doi: 10.15666/aeer |
[46] |
Ahmadov R, Gerbig C, Kretschmer R, et al. Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2[J]. Biogeosciences, 2009, 6(5):807-817.
doi: 10.5194/bg-6-807-2009 |
[47] | 陈良富, 张莹, 邹铭敏, 等. 大气CO2浓度卫星遥感进展[J]. 遥感学报, 2015, 19(1):1-11. |
[Chen L F, Zhang Y, Zou M M, et al. Overview of atmospheric CO2 remote sensing from space [J]. Journal of Remote Sensing, 2015, 19(1):1-11. ] | |
[48] | 符传博, 丹利. 全球对流层中层二氧化碳柱浓度数据集(2003-2015)[J]. 全球变化数据学报(中英文), 2019, 3(2):149-154,215-220. |
[Fu C B, Dan L. Carbon dioxide column data in the mid-troposphere (2003-2015)[J]. Global Change Research Data Publishing & Repository, 2019, 3(2):149-154,215-220. ] | |
[49] | 邓安健, 郭海波, 胡洁, 等. GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征[J]. 遥感学报, 2020, 24(03):319-325. |
[Deng A J, Guo H B, Hu J, et al. Analysis of temporal and distribution characteristic of CO2 concentration over China based on GOSAT satellite data [J]. Journal of Remote Sensing (Chinese), 2020, 24(03):319-325. ] | |
[50] | 李丽, 张丽, 燕琴, 等. 基于GOSAT数据集的全球碳通量分析[J]. 地理与地理信息科学, 2014, 30(1):91-96,2. |
[Li L, Zhang L, Yan Q, et al. Analysis of global carbon fluxes based on GOSAT datasets[J]. Geography and Geo-Information Science, 2014, 30(1):91-96,2. ] | |
[51] |
赵静, 崔伟宏. 中国区域近地面CO2时空分布特征研究[J]. 地球信息科学学报, 2014, 16(2):207-213.
doi: 10.3724/SP.J.1047.2014.00207 |
[Zhao J, Cui W H. Spatial and Temporal Distribution Characteristics of CO2 Column Concentration in China from 2009 to 2010 [J]. Journal od Geo-information Science, 2014, 16(2):207-213. ] | |
[52] | 何江浩, 蔡玉林, 秦鹏. 二氧化碳的时空变化规律与影响因素分析[J]. 科学通报, 2020, 65(Z1):194-202. |
[He J H, Cai Y L, Qin P. Spatial and temporal variations of carbon dioxide and its influencing factors. Chinese Science Bulletin, 2020, 65(Z1):194-202. ] | |
[53] |
Yang D, Liu Y, Cai Z, et al. First global carbon dioxide maps produced from TanSat measurements[J]. Advances in Atmospheric Sciences, 2018, 35(6):621-623.
doi: 10.1007/s00376-018-7312-6 |
[54] | Fischer E M, Knutti R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes[J]. Nature Climate Change, 2015, 5(6):560-564. |
[55] |
Schimel D, Stephens B B, Fisher J B. Effect of increasing CO2 on the terrestrial carbon cycle[J]. Proceedings of the National Academy of Sciences, 2015, 112(2):436-441.
doi: 10.1073/pnas.1407302112 |
[56] |
Long S M, Hu K M, Li G, et al. Surface Temperature Changes Projected by FGOALS Models under Low Warming Scenarios in CMIP5 and CMIP6[J]. Advances in Atmospheric Sciences, 2021, 38:203-220.
doi: 10.1007/s00376-020-0177-5 |
[57] | 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7):668-681. |
[Jiao N Z, Li C, Wang X X. Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7):668-681. ] | |
[58] |
Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8):593-599.
doi: 10.1038/nrmicro2386 |
[59] | 张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州:浙江大学, 2018. |
[Zhang H. A modeling study of interactive feedbacks between carbon dioxide, global warming, ocean acidification, and the ocean carbon cycle[D]. Hangzhou: Zhejiang University, 2018. ] | |
[60] |
Zhai W. Quantifying air-seare-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise[J]. Journal of Oceanography, 2016, 72(4):651-659.
doi: 10.1007/s10872-016-0350-8 |
[61] |
Briber B M, Hutyra L R, Dunn A L, et al. Variations in atmospheric CO2 mixing ratios across a Boston, MA urban to rural gradient[J]. Land, 2013, 2(3):304-327.
doi: 10.3390/land2030304 |
[62] |
Chaudhari P R, Gajghate D G, Dhadse S, et al. Monitoring of environmental parameters for CO2 sequestration: A case study of Nagpur City, India[J]. Environmental Monitoring and Assessment, 2007, 135:281-290.
pmid: 17492488 |
[63] |
Forkel M, Carvalhais N, Rödenbeck C, et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems[J]. Science, 2016, 351(6274):696-699.
doi: 10.1126/science.aac4971 |
[64] |
Huang P, Xie S P, Hu K, et al. Patterns of the seasonal response of tropical rainfall to global warming[J]. Nature Geoscience, 2013, 6(5):357-361.
doi: 10.1038/ngeo1792 |
[65] |
Long S M, Xie S P, Liu W. Uncertainty in tropical rainfall projections: atmospheric circulation effect and the ocean coupling[J]. Journal of Climate, 2016, 29(7):2671-2687.
doi: 10.1175/JCLI-D-15-0601.1 |
[66] | 黄晓娴. 城市二氧化碳特征及区域非均匀分布对气候的影响[D]. 南京:南京大学, 2015. |
[Huang X X. Characteristics of atmospheric carbon dioxide in urban area and the influence of the regionally in homogeneously distribution on climate[D]. Nanjing: Nanjing University, 2015. ] | |
[67] | 赵领娣, 吴栋. 中国能源供给侧碳排放核算与空间分异格局[J]. 中国人口·资源与环境, 2018, 28(2):48-58. |
[Zhao L D, Wu D. Carbon emission accounting and spatial heterogeneity pattern of China's energy supply side[J]. China Population, Resources and Environment, 2018, 28(2):48-58. ] | |
[68] | 涂正革, 谌仁俊. 工业化、城镇化的动态边际碳排放量研究——基于LMDI“两层完全分解法”的分析框架[J]. 中国工业经济, 2013(9):31-43. |
[Tu Z G, Shen R J. Industrialization's, urbanization's dynamic marginal carbon emissions-The analytical framework based on LMDI "wo-level perfect decomposition" method[J]. China Industrial Economics, 2013(9):31-43.] | |
[69] |
Pongratz J, Caldeira K. Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change[J]. Environmental research letters, 2012, 7(3):034001.
doi: 10.1088/1748-9326/7/3/034001 |
[70] | 杜立民. 我国二氧化碳排放的影响因素:基于省级面板数据的研究[J]. 南方经济, 2010(11):20-33. |
[Du L M. Impact factors of China's carbon dioxide emissions provincial panel data analysis[J]. South China Journal of Economics, 2010(11):20-33. ] | |
[71] | 史琴琴, 鲁丰先, 陈海, 等. 中原经济区城镇居民消费间接碳排放时空格局及其影响因素[J]. 资源科学, 2018, 40(6):1297-1306. |
[Shi Q Q, Lu X F, Chen H, et al. Temporal-spatial patterns and factors affecting indirect carbon emissions from urban consumption in the Central Plains Economic Region[J]. Resources Science, 2018, 40(6):1297-1306. ] | |
[72] |
Liu Y, Chen Z M, Xiao H, et al. Driving factors of carbon dioxide emissions in China: An empirical study using 2006-2010 provincial data[J]. Frontiers of Earth Science, 2017, 11(1):156-161.
doi: 10.1007/s11707-016-0557-4 |
[73] |
Bergeron O, Strachan I B. CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city[J]. Atmospheric Environment, 2011, 45(8):1564-1573.
doi: 10.1016/j.atmosenv.2010.12.043 |
[74] |
Górka M, Lewicka-Szczebak D. One-year spatial and temporal monitoring of concentration and carbon isotopic composition of atmospheric CO2 in a Wrocław (SW Poland) city area[J]. Applied Geochemistry, 2013, 35:7-13.
doi: 10.1016/j.apgeochem.2013.05.010 |
[75] |
邓祥征, 丹利, 叶谦, 等. 碳排放和减碳的社会经济代价研究进展与方法探究[J]. 地球信息科学学报, 2018, 20(4):405-413.
doi: 10.12082/dqxxkx.2018.170590 |
[Deng X Z, Dan L, Ye Q, et al. Methodological framework and research progress on the social and economic costs of carbon emission and reduction[J]. Journal of Geo-information Science, 2018, 20(4):405-413. ] | |
[76] | 国家科技管理信息系统公共服务平台. 关于对“十四五”国家重点研发计划“氢能技术”等18个重点专项2021年度项目申报指南征求意见的通知[EB/OL]. https://serv-ice.most.gov.cn/kjjh_tztg_all/20210201/4186.html, 2021-02-01. |
[National Science and Technology Information System, Public Service Platform. Notice on soliciting opinions on 2021 project application guidelines for 18 key special projects including "hydrogen energy technology" in the national key research and development program of the 14th five year plan [EB/OL]. https://service.most.gov.cn/kjjh_tztg_all/20210201/4186.html, 2021-02-01. ] |
[1] | 张志恒, 章超, 孟麟, 唐凯, 朱红春. 改进DINEOF算法在中国渤海叶绿素a遥感缺失数据重构中的应用研究[J]. 地球信息科学学报, 2021, 23(4): 737-748. |
[2] | 蒲东川, 王桂周, 张兆明, 牛雪峰, 何国金, 龙腾飞, 尹然宇, 江威, 孙嘉悦. 基于独立成分分析和随机森林算法的城镇用地提取研究[J]. 地球信息科学学报, 2020, 22(8): 1597-1606. |
[3] | 周佳, 赵亚鹏, 岳天祥, 卢涛. 结合HASM和GWR方法的省级尺度近地表气温估算[J]. 地球信息科学学报, 2020, 22(10): 2098-2107. |
[4] | 洪娅岚,薛存金,刘敬一,刘星,孙强,伍程斌. 全球海洋初级生产力时空异常变化对ENSO事件的响应[J]. 地球信息科学学报, 2019, 21(10): 1538-1549. |
[5] | 胡云锋, 赵冠华, 张云芝. 北京城市绿化的时空动态分析[J]. 地球信息科学学报, 2018, 20(3): 332-339. |
[6] | 何茜, 余涛* , 程天海, 顾行发, 谢东海, 吴俣 . 大气二氧化碳遥感反演精度检验及时空特征分析(可下载全文)[J]. 地球信息科学学报, 2012, 14(2): 250-257. |
[7] | 黄安徽. 地质灾害卫星遥感监测系统建设方案[J]. 地球信息科学学报, 2007, 9(6): 116-119. |
[8] | 朱光良. IKONOS等高分辨率遥感技术的发展与应用分析[J]. 地球信息科学学报, 2004, 6(3): 108-110. |
[9] | 刘德富, 康春丽, 黎令仪, 高国英. 强震事件的在线预测技术——伽师-巴楚6.8级强震发生的后思考[J]. 地球信息科学学报, 2003, 5(4): 83-87. |
[10] | 钱金凯. 香港揽胜太空影像地图集的设计与计算机制图[J]. 地球信息科学学报, 2001, 3(2): 29-33. |
[11] | 王让会, 马映军. 卫星遥感与地球系统的时空耦合关系研究[J]. 地球信息科学学报, 2000, 2(3): 65-69. |
[12] | 卢中正, 王飞跃, 鲍桂宝. 卫星遥感在煤炭工业中的应用实践与展望[J]. 地球信息科学学报, 2000, 2(2): 58-61. |
[13] | 刘宝银, 张杰. 海洋科学的前沿—“数字海洋”[J]. 地球信息科学学报, 2000, 2(1): 8-11. |
[14] | 刘德富. 台湾集集强震前的卫星遥感长波辐射场变异分析[J]. 地球信息科学学报, 2000, 2(1): 33-36. |
|