地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (11): 1894-1909.doi: 10.12082/dqxxkx.2021.210091
• 专栏:全球新型冠状病毒肺炎(COVID-19)疫情时空建模与决策分析 • 上一篇 下一篇
尹凌1,*(), 刘康1, 张浩1,2, 奚桂锴1,2, 李璇1,2, 李子垠1,2, 薛建章1,3
收稿日期:
2021-02-02
修回日期:
2021-09-15
出版日期:
2021-11-25
发布日期:
2022-01-25
作者简介:
尹凌(1981- ),女,重天人,博 上,研究员,研究方向为时空大数据空间传染病模型交通GIS。E-mail: yinling@siat.ac.cn
基金资助:
YIN Ling1,*(), LIU Kang1, ZHANG Hao1,2, XI Guikai1,2, LI Xuan1,2, LI Ziyin1,2, XUE Jianzhang1,3
Received:
2021-02-02
Revised:
2021-09-15
Online:
2021-11-25
Published:
2022-01-25
Contact:
YIN Ling
Supported by:
摘要:
构建传染病模型可为疫情防控与公共卫生研究提供至关重要的规划与解析工具。由于宿主行为是传染病传播动态的决定性因素之一,有效耦合人群时空行为对以人为宿主的传染病建模具有重要意义。得益于人群移动大数据研究与应用的快速发展,新型冠状病毒肺炎(COVID-19)的疫情建模研究中呈现出了耦合人群移动建模的显著特征。为系统深入理解该项传染病模型研究中的重要进展,本文对相关文献进行分析与总结。首先,本文分析了COVID-19疫情与人群移动的交互影响,说明了耦合人群移动构建COVID-19模型的必要性。然后,根据建模的目的和原理,从疫情短期预测与过程模拟2个角度,对耦合人群移动的COVID-19传染病模型进行分类梳理。其中,根据耦合人群移动的方式,本文将面向疫情短期预测的模型分为人群移动一阶量与人群移动二阶量的耦合模型,将基于过程模拟的模型分为群体级别和个体级别的耦合模型。最后,本文评述了耦合人群移动的传染病模型研究进展和未来发展方向,认为该领域研究亟需更加深入建模与疾病传播相关的复杂人群时空行为、提升模型的空间解析能力、突破精细化时空传播模拟的计算瓶颈、拓展与前沿人工智能方法的融合,并构建普适而开放的建模数据与工具以促进应用发展。
尹凌, 刘康, 张浩, 奚桂锴, 李璇, 李子垠, 薛建章. 耦合人群移动的COVID-19传染病模型研究进展[J]. 地球信息科学学报, 2021, 23(11): 1894-1909.DOI:10.12082/dqxxkx.2021.210091
YIN Ling, LIU Kang, ZHANG Hao, XI Guikai, LI Xuan, LI Ziyin, XUE Jianzhang. Integrating Human Mobility into the Epidemiological Models of COVID-19: Progress and Challenges[J]. Journal of Geo-information Science, 2021, 23(11): 1894-1909.DOI:10.12082/dqxxkx.2021.210091
表1
面向疫情短期预测的人群移动耦合模型相关研究
分类 | 参考文献 | 模型 | 预测目标 | 预测的时间范围 | 研究区域 | 人群移动数据 | 评估指标 | 预测性能 |
---|---|---|---|---|---|---|---|---|
人群移动一阶量 | [ | 广义线性模型 | 每日COVID-19新增感染人数和累计感染人数 | 2020年2月1日—10日 | 中国的多个 省份 | 百度迁徙指数 | R2 | 预测截止至2020年2月10号(疫情初期)中国除武汉市外的累计病例数的R2为0.89 |
[ | 整合线性回归和自回归移动平均的预测模型 | 每日COVID-19输入性病例数 | 提前预测未来 12 d | 韩国的多个 省市 | 韩国电信的手机漫游数据 | 相关系数、均方根误差、平均绝对误差和平均相对误差 | 预测未来12 d后的新增输入病例人数时,该模型在第一个验证集(2020.03.28—04.30)的相关系数、均方根误差、平均绝对误差和平均相对误差分别为0.925、6.3、5.0和49.9%,在第二个验证集(2020.05.01-06.30)的相关系数、均方根误差、平均绝对误差和平均相对误差分别为0.798、4.1、2.8和22.3% | |
[ | 多元线性回归 模型 | 每日COVID-19新增感染人数 | 2020年2月1日—2月15日(列举了分别预测1~5 d的精度) | 中国的4个城市(深圳、广州、珠海和中山市) | 百度迁徙数据 | 平均绝对误差、均方根误差和R2 | 以深圳市和广州市这两个人口流动较为频繁的城市为例,预测深圳市未来1天新增感染人数的平均绝对误差、均方根误差和R2分别为7、7.234和0.988,广州市的平均绝对误差、均方根误差和R2则分别为6.067、6.434和0.985 | |
[ | 基于面板多元线性回归模型的行为模型和基于分布滞后模型的感染模型 | 每日COVID-19累计感染人数 | 提前预测未来1~10 d | 中国、美国、法国等80个国家的多种空间尺度(如,国家、省/州、市/县) | 谷歌社区移动性数据集、百度迁徙指数、SafeGraph社交距离指标、Facebook提供的网格间的人口移动次数 | 百分比误差的中位数(Median Percentage Error, MPE) | 以在粗粒度的空间尺度上预测未来1 d COVID-19的累计感染人数为例,全球的百分比误差中位数为0.9%,中国各省的百分比误差中位数为-0.2%,意大利各省的百分比误差中位数为0.89%,美国各州的百分比误差中位数为1.13% | |
[ | 贝叶斯网络 | 每日COVID-19新增死亡人数 | 2020年3月30日—4月19日(列举了每周的预测精度) | 意大利、西班牙等11个国家 | 谷歌社区移动性数据集 | 平均误差以及平均相对误差 | 预测未来1周的死亡人数时,11个国家平均误差绝对值的均值为60,平均相对误差绝对值的均值则为2.5% | |
[ | 融合弹性回归和主成分回归等多个模型的多层预测模型 | 每日COVID-19新增感染人数和累计感染人数 | 提前预测未来1、4和7 d的平均值 | 美国的多个县 | 谷歌社区移动性数据集 | 平均绝对误差、均方根误差和R2 | 预测未来1 d的新增感染人数时,R2、均方根误差和平均绝对误差分别为0.91、105和39;预测未来1 d的累计感染人数时,R2、均方根误差和平均绝对误差则分别为1.0、189和103 | |
人群移动二阶量 | [ | 基于图的神经 网络 | 每日COVID-19新增感染人数 | 提前预测未来2、7、14、21和28d | 美国的多个州 | 谷歌COVID-19聚合移动研究数据集 | 均方根误差和皮尔斯相关系数 | 预测未来第2 d时,均方根误差和皮尔森相关系数分别为313和0.298 |
[ | 时空图神经网络 | 每日COVID-19新增感染人数 | 提前预测未来1d | 美国的多个县 | 谷歌社区移动性数据集和谷歌COVID-19聚合移动研究数据集 | 均方根对数误差和皮尔斯相关系数 | 预测未来1 d时,均方根对数误差和皮尔森相关系数分别为0.0109和0.9980 | |
[ | 时空注意力网络 | 每日COVID-19新增感染人数 | 提前预测未来5、15、20 d | 美国的多个州和多个县 | 通过重力模型计算的市/县和州之间的人群移动强度 | 平均绝对误差、均方误差和一致性相关系数 | 预测未来第5 d时,美国州级别的均方误差、平均绝对误差和一致性相关系数分别为237 412、220.5和0.84,美国县级别的均方误差、平均绝对误差和一致性相关系数分别为44177、79.8和0.66 |
表2
基于过程模拟的人群移动耦合模型相关研究
分类 | 文献 | 研究区域 | 人群移动数据 | 模型模拟的干预措施 | 病例真实值 | 病例模拟值 | 模型效果 |
---|---|---|---|---|---|---|---|
群体级别 | [ | 意大利 | 人口流量调查 | 严格管控出行活动、加大疫情排查力度 | 74 386 | 约733 000 | 模拟的疾病发展曲线与实际情况吻符合程度较高 |
[ | 武汉 | 百度实时流动性数据 | - | 554 | 632 | 累计病例数的R2=0.99 | |
[ | 中国375个城市 | 腾讯位置服务人口实时流动性数据 | 佩戴口罩、社交疏离、自我 隔离 | 13 562 | 约1.2万 | 预测的疾病报告率为14%,与实际武汉市疾病报告率15.8%非常接近 | |
[ | 中国340个城市 | 百度迁徙人口流动数据 | 综合性非药物性干预 | 79 824 | 114 325 | 全国累计病例的R2=0.86,P值<0.001 | |
[ | 中国 | 手机实时移动性和社交联系数据、腾讯移动设 备数据集 | 疫苗接种、社交疏离 | 未使用真实数据 | 未给出具体值 | 严格的干预措施可大幅降低传播能力 | |
[ | 深圳市 | 手机移动信令数据 | 降低出行量、区域封锁 | 未使用真实数据 | R0=2.5时,峰值病例数减少了33% | 模拟的疾病发展曲线与实际情况吻合程度较高 | |
[ | 美国康涅狄格州 | 城镇级人口流动数据, 智能手机热图,空中交 通流量 | 社交疏离 | 47 510 | 45 752~48 105 | 对康涅狄格州所有城镇模拟,实际统计的病例R2在0.907~0.924;按类别对城镇进行模拟,实际统计的病例R2为0.978~0.987 | |
[ | 全球 | 航空与地面交通数据 | 降低本地传播率和国际旅行 | 未使用真实数据 | 未给出具体模拟值 | 严格的干预措施可大幅降低传播能力 | |
个体级别 | [ | 新加坡 | 交通数据 | 隔离感染者、关闭学校和工作场所 | 未使用真实数据 | R0=1.5时,7.4%的总人口感染;R0=2.0时,19.3%的总人口感染;R0=2.5时,32%的总人口感染 | 未给出具体评价指标 |
[ | 波士顿 | 手机位置数据 | 检测、密接追踪、居家隔离 | 未使用真实数据 | 无干预场景75%的人口被感染 | 未给出具体评价指标 | |
[ | 纽约、西雅图 | 手机位置数据 | 无干预措施 | 每天每千人的死亡人数(未给出具体值) | 每天每千人的死亡人数(未给出具体值) | 模型结果与真实死亡人数的拟合效果较好,二者到达峰值的时间差略大于5 d | |
[ | 澳大利亚 | 人口通勤数据 | 国际航空旅行限制、隔离感染者、居家隔离、增大社交距离、关闭学校 | 未使用真实数据 | 最佳干预场景下有8千~1万人被感染 | 未给出具体评价指标 | |
[ | 深圳市 | 手机信令数据 | 密接追踪、及时检测、佩戴口罩、封城、逐步复工、隔离综合措施 | 418 | 416 | 每日新增发病数量的模拟值与实际报告值的RMSE=1.354;显性感染者数量在城市内各个行政区尺度上的R2=0.95 |
[1] |
裴韬, 王席, 宋辞, 等. COVID-19疫情时空分析与建模研究进展[J]. 地球信息科学学报, 2021, 23(2):188-210.
doi: 10.12082/dqxxkx.2021.200434 |
[ Pei T, Wang X, Song C, et al. Review on spatiotemporal analysis and modeling of COVID-19 pandemic[J]. Journal of Geo-information Science, 2021, 23(2):188-210. ] | |
[2] |
Holmdahl I, Buckee C. Wrong but useful: What COVID-19 epidemiologic models can and cannot tell us[J]. New England Journal of Medicine, 2020, 383(4):303-305.
doi: 10.1056/NEJMp2016822 |
[3] |
Zhou C, Su F, Pei T, et al. COVID-19: Challenges to GIS with Big Data[J]. Geography and Sustainability, 2020, 1(1):77-87.
doi: 10.1016/j.geosus.2020.03.005 |
[4] |
Yang C, Sha D, Liu Q, et al. Taking the pulse of COVID-19: A spatiotemporal perspective[J]. International Journal of Digital Earth, 2020, 13(10):1186-1211.
doi: 10.1080/17538947.2020.1809723 |
[5] |
陆锋, 刘康, 陈洁. 大数据时代的人类移动性研究[J]. 地球信息科学学报, 2014, 16(5):665-672.
doi: 10.3724/SP.J.1047.2014.00665 |
[ Lu F, Liu K, Chen J. Research on human mobility in big data era[J]. Journal of Geo-information Science, 2014, 16(5):665-672. ] | |
[6] |
Dodge S, Gao S, Tomko M, et al. Progress in computational movement analysis - towards movement data science[J]. International Journal of Geographical Information Science, 2020, 34(12):2395-2400.
doi: 10.1080/13658816.2020.1784425 |
[7] |
Oliver N, Lepri B, Sterly H, et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle[J]. Science Advances, 2020, 6(23):eabc0764.
doi: 10.1126/sciadv.abc0764 |
[8] |
Kang Y, Gao S, Liang Y, et al. Multiscale dynamic human mobility flow dataset in the U.S. during the COVID-19 epidemic[J]. Scientific Data, 2020, 7(1):1-13.
doi: 10.1038/s41597-019-0340-y |
[9] |
Kraemer M U G, Yang C H, Gutierrez B, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020, 368(6490):493-497.
doi: 10.1126/science.abb4218 pmid: 32213647 |
[10] | Yuan Z, Xiao Y, Dai Z, et al. A simple model to assess Wuhan lock-down effect and region efforts during COVID-19 epidemic in China Mainland[J]. MedRxiv, 2020.02.29.20029561. |
[11] |
Xiong C, Hu S, Yang M, et al. Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections[J]. Proceedings of the National Academy of Sciences, 2020, 117(44):27087-27089.
doi: 10.1073/pnas.2010836117 |
[12] |
Mu X, Yeh A G O, Zhang X. The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year[J]. Environment and Planning B: Urban Analytics and City Science, 2020, 48(7):1955-1971.
doi: 10.1177/2399808320954211 |
[13] |
Zhou Y, Xu R, Hu D, et al. Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: A modelling study using mobile phone data[J]. The Lancet Digital Health, 2020, 2(8):e417-e424.
doi: 10.1016/S2589-7500(20)30165-5 |
[14] |
Chen X, Zhang A, Wang H, et al. Compliance and containment in social distancing: Mathematical modeling of COVID-19 across townships[J]. International Journal of Geographical Information Science, 2021, 35(3):1-20.
doi: 10.1080/13658816.2020.1766244 |
[15] |
Lai S, Ruktanonchai N W, Zhou L, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China[J]. Nature, 2020, 585(7825):410-413.
doi: 10.1038/s41586-020-2293-x |
[16] |
Badr H S, Du H, Marshall M, et al. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study[J]. The Lancet Infectious Diseases, 2020, 20(11):1247-1254.
doi: 10.1016/S1473-3099(20)30553-3 |
[17] |
Wang S, Liu Y, Hu T. Examining the change of human mobility adherent to social restriction policies and its effect on COVID-19 cases in Australia[J]. International journal of environmental research and public health, 2020, 17(21):7930.
doi: 10.3390/ijerph17217930 |
[18] |
Chang S, Pierson E, Koh P W, et al. Mobility network models of COVID-19 explain inequities and inform reopening[J]. Nature, 2021, 589:82-87.
doi: 10.1038/s41586-020-2923-3 |
[19] |
Pan Y, Darzi A, Kabiri A, et al. Quantifying human mobility behaviour changes during the COVID-19 outbreak in the United States[J]. Scientific Reports, 2020, 10:20742.
doi: 10.1038/s41598-020-77751-2 |
[20] |
Yabe T, Tsubouchi K, Fujiwara N, et al. Non-compulsory measures sufficiently reduced human mobility in Tokyo during the COVID-19 epidemic[J]. Scientific Reports, 2020, 10:18053.
doi: 10.1038/s41598-020-75033-5 |
[21] | Huang B, Wang J H, Cai J X, et al. Integrated vaccination and physical distancing interventions to prevent future COVID-19 waves[J]. Nature Human Behavior, 2021, 5:695-705. |
[22] | Warren M S, Skillman S W. Mobility changes in response to COVID-19[J]. ArXiv preprint, 2020, 2003:14228. |
[23] |
Santamaria C, Sermi F, Spyratos S, et al. Measuring the impact of COVID-19 confinement measures on human mobility using mobile positioning data. A European regional analysis[J]. Safety Science, 2020, 132:104925.
doi: 10.1016/j.ssci.2020.104925 pmid: 32952303 |
[24] | Huang J, Wang H, Fan M, et al. Understanding the impact of the COVID-19 pandemic on transportation-related behaviors with human mobility data[C]. KDD'20: Proceedings of the 26 th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020:3443-3450. |
[25] |
Huang X, Li Z, Jiang Y, et al. Twitter reveals human mobility dynamics during the COVID-19 pandemic[J]. PloS one, 2020, 15(11):e0241957.
doi: 10.1371/journal.pone.0241957 pmid: 33170889 |
[26] | Wang S, Wei K, Lin L, et al. Spatial-temporal Analysis of COVID-19's Impact on Human Mobility: the Case of the United States[J]. ArXiv preprint, 2020: 2010.03707. |
[27] |
Li Y, Zeng Y, Liu G, et al. Public awareness, emotional reactions and human mobility in response to the COVID-19 outbreak in China: A population-based ecological study[J]. Psychological medicine, 2020, 25:1-8.
doi: 10.1017/S0033291700028026 |
[28] |
Bonaccorsi G, Pierri F, Cinelli M, et al. Economic and social consequences of human mobility restrictions under COVID-19[J]. Proceedings of the National Academy of Sciences, 2020, 117(27):15530-15535.
doi: 10.1073/pnas.2007658117 |
[29] |
Liu K, Zhang M, Xi G, et al. Enhancing fine-grained intra-urban dengue forecasting by integrating spatial interactions of human movements between urban regions[J]. PLOS Neglected Tropical Diseases, 2020, 14(12):e0008924.
doi: 10.1371/journal.pntd.0008924 |
[30] | Wang L, Ben X, Adiga A, et al. Using mobility data to understand and forecast COVID19 Dynamics[J]. MedRxiv, 2020.12.13.20248129. |
[31] |
Choi S B, Ahn I. Forecasting imported COVID-19 cases in South Korea using mobile roaming data[J]. PloS one, 2020, 15(11):e0241466.
doi: 10.1371/journal.pone.0241466 |
[32] |
Wang R, Ji C, Jiang Z, et al. A short-term prediction model at the early stage of the COVID-19 pandemic based on multisource urban data[J]. IEEE Transactions on Computational Social Systems, 2021, 8(4):938-945.
doi: 10.1109/TCSS.2021.3060952 |
[33] | Ilin C, Annan-Phan S E, Tai X H, et al. Public mobility data enables COVID-19 forecasting and management at local and global scales[J]. MedRxiv, 2020.10.29.20222547. |
[34] |
Bryant P, Elofsson A. Estimating the impact of mobility patterns on COVID-19 infection rates in 11 European countries[J]. Peer J, 2020, 8(5):e9879.
doi: 10.7717/peerj.9879 |
[35] |
Kuo C P, Fu J S. Evaluating the impact of mobility on COVID-19 pandemic with machine learning hybrid predictions[J]. Science of the Total Environment, 2021, 758:144151.
doi: 10.1016/j.scitotenv.2020.144151 |
[36] | Kapoor A, Ben X, Liu L, et al. Examining COVID-19 Forecasting using spatio-temporal graph neural networks[J]. ArXiv preprint, 2020, arXiv:2007.03113. |
[37] | Gao J, Sharma R, Qian C, et al. Stan: Spatio-temporal attention network for pandemic prediction using real world evidence[J]. ArXiv preprint, 2020, arXiv: 2008. 04215. |
[38] |
Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 1927, 115(772):700-721.
doi: 10.1098/rspa.1927.0118 |
[39] |
Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics-II. The problem of endemicity[J]. Bulletin of mathematical biology, 1991, 53(1-2):57-87.
pmid: 2059742 |
[40] | 王玉, 陈姗姗, 傅新楚. 传播动力学模型回顾与展望[J]. 应用数学与计算数学学报, 2018, 32(2):267-294. |
[ Wang Y, Chen S S, Fu X C. Review and prospect of propagation dynamics models[J]. Communication on Applied Mathematics and Computation, 2018, 32(2):267-294. ] | |
[41] |
Prem K, Liu Y, Russell T W, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study[J]. The Lancet Public Health, 2020, 5(5):e261-e270.
doi: 10.1016/S2468-2667(20)30073-6 |
[42] |
Wu J T, Leung K, Leung G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study[J]. The Lancet, 2020, 395(10225):689-697.
doi: 10.1016/S0140-6736(20)30260-9 |
[43] |
Kucharski A J, Russell T W, Diamond C, et al. Early dynamics of transmission and control of COVID-19: A mathematical modelling study[J]. The lancet infectious diseases, 2020, 20(5):553-558.
doi: 10.1016/S1473-3099(20)30144-4 |
[44] |
Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3):165.
doi: 10.21037/jtd |
[45] | 洪航, 史宏博, 姜海波, 等. 基于传染病动力学模型的宁波市新型冠状病毒肺炎防控措施效果评估[J]. 中华流行病学杂志, 2020, 41(10):1606-1610. |
[ Hong H, Shi H B, Jiang H B, et al. Epidemic dynamic model based evaluation of effectiveness of prevention and control strategies for COVID-19 in Ningbo[J]. Chin J Epidemiol, 2020, 41(10):1606-1610. ] | |
[46] |
Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)[J]. Science, 2020, 368(6490):489-493.
doi: 10.1126/science.abb3221 |
[47] |
Gatto M, Bertuzzo E, Mari L, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures[J]. Proceedings of the National Academy of Sciences, 2020, 117(19):10484-10491.
doi: 10.1073/pnas.2004978117 |
[48] |
Chinazzi M, Davis J T, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak[J]. Science, 2020, 368(6489):395-400.
doi: 10.1126/science.aba9757 pmid: 32144116 |
[49] |
Li R, Chen B, Zhang T, et al. Global COVID-19 pandemic demands joint interventions for the suppression of future waves[J]. Proceedings of the National Academy of Sciences, 2020, 117(42):26151-26157.
doi: 10.1073/pnas.2012002117 |
[50] |
Bian L. A conceptual framework for an individual-based spatially explicit epidemiological model[J]. Environment and Planning B: Planning and Design, 2004, 31(3):381-395.
doi: 10.1068/b2833 |
[51] |
Ferguson N M, Cummings D A T, Cauchemez S, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia[J]. Nature, 2005, 437(7056):209-214.
doi: 10.1038/nature04017 |
[52] |
Merler S, Ajelli M, Fumanelli L, et al. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis[J]. The Lancet Infectious Diseases, 2015, 15(2):204-211.
doi: 10.1016/S1473-3099(14)71074-6 |
[53] | 徐展凯, 徐致靖, 祖正虎, 等. 基于个体的传染病传播模型应用[J]. 生物技术通讯, 2015, 26(1):46-50. |
[ Xu Z K, Xu Z J, Zu Z H, et al. Application of Individual-based Transmission Models[J]. Letters in biotechnology, 2015, 26(1):46-50. ] | |
[54] |
Volz E, Meyers L A. Susceptible-infected-recovered epidemics in dynamic contact networks[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1628):2925-2934.
doi: 10.1098/rspb.2007.1159 |
[55] |
Liu K, Yin L, Ma Z, et al. Investigating physical encounters of individuals in urban metro systems with large-scale smart card data[J]. Physica A: Statistical Mechanics and its Applications, 2020, 545:123398.
doi: 10.1016/j.physa.2019.123398 |
[56] |
Staffini A, S. A., Chung U, Svensson T. An agent-based model of the local spread of SARS-CoV-2: Modeling study[J]. JMIR Medical Informatics, 2021, 9(4):e24192.
doi: 10.2196/24192 |
[57] | Son W S, Team R. Individual-based simulation model for COVID-19 transmission in Daegu, Korea[J]. Epidemiology and health, 2020, 42:e2020042. |
[58] | Ferguson N, Laydon D, Nedjati Gilani G, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand[R]. Imperial College London COVID- 19, 2020. |
[59] |
Silva P C L, Batista P V C, Lima H S, et al. COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions[J]. Chaos, Solitons & Fractals, 2020, 139:110088.
doi: 10.1016/j.chaos.2020.110088 |
[60] |
Koo J R, Cook A R, Park M, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study[J]. The Lancet Infectious Diseases, 2020, 20(6):678-688.
doi: 10.1016/S1473-3099(20)30162-6 |
[61] |
Aleta A, Martin-Corral D, y Piontti A P, et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19[J]. Nature Human Behaviour, 2020, 4(9):964-971.
doi: 10.1038/s41562-020-0931-9 |
[62] | Aleta A, Martín-Corral D, Bakker M A, et al. Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas. MedRxiv.2020.12.15.20248273. |
[63] |
Chang S L, Harding N, Zachreson C, et al. Modelling transmission and control of the COVID-19 pandemic in Australia[J]. Nature Communications, 2020, 11(1):1-13.
doi: 10.1038/s41467-019-13993-7 |
[64] |
Yin L, Zhang H, Li Y, et al. A data driven agent-based model that recommends non-pharmaceutical interventions to suppress Coronavirus disease 2019 resurgence in megacities[J]. Journal of the Royal Society Interface, 2021, 18(181):20210112.
doi: 10.1098/rsif.2021.0112 |
[65] | 张浩, 尹凌, 刘康, 等. 深圳市快速抑制COVID-19疫情的非药物干预措施效果评估:基于智能体的建模研究[J]. 地球信息科学学报, 2021:1-10. |
[ Zhang H, Yin L, Liu K, et al. Effectiveness of non-pharmaceutical interventions on suppressing the 1st wave of COVID-19 epidemic in Shenzhen: An agent-based modelling study[J]. Journal of Geo-information Science, 2021:1-10. ] | |
[66] |
Li M, Shi X, Li X. Integration of spatialization and individualization: the future of epidemic modelling for communicable diseases[J]. Annals of GIS, 2020, 26(3):219-226.
doi: 10.1080/19475683.2020.1768438 |
[67] |
Feehan D M, Mahmud A S. Quantifying population contact patterns in the United States during the COVID-19 pandemic[J]. Nature Communications, 2021, 12(1):1-9.
doi: 10.1038/s41467-020-20314-w |
[68] |
Rahmandad H, Sterman J. Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models[J]. Management Science, 2008, 54(5):998-1014.
doi: 10.1287/mnsc.1070.0787 |
[69] | Alexiadis A, Albano A, Rahmat A, et al. Simulation of pandemics in real cities: Enhanced and accurate digital laboratories[J]. Proceedings of the Royal Society A, 2021, 477(2245):20200653. |
[70] | Zou D, Wang L, Xu P, et al. Epidemic model guided machine learning for COVID-19 forecasts in the United States[J]. medRxiv, 2020.05.24.20111989. |
[71] |
Zheng N, Du S, Wang J, et al. Predicting COVID-19 in China using hybrid AI model[J]. IEEE transactions on cybernetics, 2020, 50(7):2891-2904.
doi: 10.1109/TCYB.6221036 |
[72] |
La Gatta V, Moscato V, Postiglione M, et al. An Epidemiological Neural network exploiting Dynamic Graph Structured Data applied to the COVID-19 outbreak[J]. IEEE Transactions on Big Data, 2021, 7(1):45-55.
doi: 10.1109/TBDATA.2020.3032755 |
[73] | 詹思延, 叶冬青, 谭红专. 流行病学(第7版)[M]. 北京: 人民卫生出版社, 2013. |
[ Zhan S Y, Ye D Q, Tan H Z. Epidemiology (the 7th edition)[M]. Beijing: People’s Medical Publishing House, 2013. ] |
[1] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[2] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[3] | 陈传明, 龚杉, 杨峰, 肖振兴, 俞庆英. 基于停留区域识别的子轨迹异常检测方法[J]. 地球信息科学学报, 2023, 25(4): 684-697. |
[4] | 王鹏洲, 赵志远, 姚伟, 吴升, 汪艳霞, 方莉娜, 邬群勇. 基于地理流空间的巡游车与网约车人群出行模式研究[J]. 地球信息科学学报, 2023, 25(4): 726-740. |
[5] | 柯日宏, 吴升, 柯玮文. 一种识别共享单车潮汐点的时空模型和基于KNN-LightGBM的租还需求预测方法[J]. 地球信息科学学报, 2023, 25(4): 741-753. |
[6] | 庄汉宸, 张亚茹, 王文轩, 张书亮. 顾及轨迹还原与分类的渣土车作业行为提取方法[J]. 地球信息科学学报, 2023, 25(4): 754-765. |
[7] | 李心雨, 闫浩文, 王卓, 王炳瑄. 街景图像与机器学习相结合的道路环境安全感知评价与影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 852-865. |
[8] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[9] | 薛山, 廖一兰, 李春林, 胡艺. 不同人口流动模式下城市传染病时空传播模型适用性研究[J]. 地球信息科学学报, 2023, 25(1): 208-222. |
[10] | 黄钦, 杨波, 徐新创, 郝汉舟, 梁莉莉, 王敏. 基于多源空间数据和随机森林模型的长沙市茶颜悦色门店选址与预测研究[J]. 地球信息科学学报, 2022, 24(4): 723-737. |
[11] | 朱秋圳, 邬群勇, 姚铖鑫, 孙豪宇. 基于DBI和稀疏轨迹数据的交通状态精细划分与识别[J]. 地球信息科学学报, 2022, 24(3): 458-468. |
[12] | 张彩丽, 向隆刚, 李雅丽, 林志勇. 顾及路网与轨迹多模特征的道路等级分类研究[J]. 地球信息科学学报, 2022, 24(10): 1925-1940. |
[13] | 刘智谦, 吕建军, 姚尧, 张嘉琪, 寇世浩, 关庆锋. 基于街景图像的可解释性城市感知模型研究方法[J]. 地球信息科学学报, 2022, 24(10): 2045-2057. |
[14] | 张雪霞, 吴升, 赵志远, 王鹏洲, 陈佐旗, 方志祥. 基于手机信令数据的城市小活动空间人群空间分布特征[J]. 地球信息科学学报, 2021, 23(8): 1433-1445. |
[15] | 邢晓语, 杨秀春, 徐斌, 金云翔, 郭剑, 陈昂, 杨东, 王平, 朱立博. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7): 1312-1324. |
|