地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (12): 2163-2173.doi: 10.12082/dqxxkx.2021.210106
陈仁丽1,2(), 吴晓青1,3,*(
), 刘柏静1,2, 王跃启1,3, 高猛1,3
收稿日期:
2021-03-04
修回日期:
2021-04-09
出版日期:
2021-12-25
发布日期:
2022-02-25
通讯作者:
*吴晓青(1978— ),女,山东肥城人,博士,研究员,主要从事海岸带规划管理、GIS与遥感应用研究。 E-mail: xqwu@yic.ac.cn作者简介:
陈仁丽(1996— ),女,山东潍坊人,硕士生,主要从事GIS与遥感应用研究。E-mail: 1987887320@qq.com
基金资助:
CHEN Renli1,2(), WU Xiaoqing1,3,*(
), LIU Baijing1,2, WANG Yueqi1,3, GAO Meng1,3
Received:
2021-03-04
Revised:
2021-04-09
Online:
2021-12-25
Published:
2022-02-25
Supported by:
摘要:
船舶自动识别系统(Automatic Identification System, AIS)不仅是海上交通监管的有效工具,也为研究海上交通运输及其相关产业活动特征提供了一种良好的数据源。基于海上渔船AIS数据,本研究利用高斯混合模型(Gaussian Mixed Model,GMM)识别渔船捕捞活动状态,提出一种将核密度估计(Kernel Density Estimation,KDE)与热点分析(Hot Spot Analysis, HSA)相融合用于渔船捕捞活动聚集区提取的方法。结果显示:与单一KDE或HSA方法相比,二者相融合的方法将KDE的距离衰减效应与HSA统计指数相结合,在渔船捕捞活动聚集区提取中的应用效果较好、效率较高;采用该融合方法,基于2018年9—12月AIS数据,实现对渤海海峡周边海域渔船捕捞活动聚集区的提取,发现不同月份,渔船捕捞活动聚集区的分布范围和空间形态特征具有一定差异性,烟威近岸海域和渤海海峡是主要的捕捞活动聚集区,其结果可为该海域捕捞活动管理和海洋生态保护提供技术方法和决策支持。
陈仁丽, 吴晓青, 刘柏静, 王跃启, 高猛. 基于AIS的海上渔船捕捞活动聚集区提取方法研究[J]. 地球信息科学学报, 2021, 23(12): 2163-2173.DOI:10.12082/dqxxkx.2021.210106
CHEN Renli, WU Xiaoqing, LIU Baijing, WANG Yueqi, GAO Meng. Mapping Method of Fishing Grounds based on Marine AIS Data[J]. Journal of Geo-information Science, 2021, 23(12): 2163-2173.DOI:10.12082/dqxxkx.2021.210106
[1] |
Coomber F G, D’Incà M, Rosso M, et al. Description of the vessel traffic within the north Pelagos Sanctuary: Inputs for Marine Spatial Planning and management implications within an existing international Marine Protected Area[J]. Marine Policy, 2016, 69:102-113.
doi: 10.1016/j.marpol.2016.04.013 |
[2] |
鹿强, 吴琳, 陈昭, 等. 海上目标多源轨迹数据关联综述[J]. 地球信息科学学报, 2018, 20(5):571-581.
doi: 10.12082/dqxxkx.2018.180024 |
[ Lu Q, Wu L, Chen Z, et al. A review of multi-source trajectory data association for marine targets[J]. Journal of Geo-information Science, 2018, 20(5):571-581. ] | |
[3] |
方志祥, 余红楚, 黄守倩. 海洋运输网络研究进展与趋势探讨[J]. 地球信息科学学报, 2018, 20(5):554-563.
doi: 10.12082/dqxxkx.2018.180178 |
[ Fang Z X, Yu H C, Huang S Q. Review of research works on maritime network[J]. Journal of Geo-information Science, 2018, 20(5):554-563. ] | |
[4] |
Shepperson J L, Hintzen N T, Szostek C L, et al. A comparison of VMS and AIS data: The effect of data coverage and vessel position recording frequency on estimates of fishing footprints[J]. ICES Journal of Marine Science, 2018, 75(3):988-998.
doi: 10.1093/icesjms/fsx230 |
[5] |
Meng Q, Weng J X, Li S Y. Analysis with automatic identification system data of vessel traffic characteristics in the Singapore Strait[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2426(1):33-43.
doi: 10.3141/2426-05 |
[6] |
McCauley D J, Woods P, Sullivan B, et al. Ending hide and seek at sea[J]. Science, 2016, 351(6278):1148-1150.
doi: 10.1126/science.aad5686 pmid: 26965610 |
[7] |
de Souza E N, Boerder K, Matwin S, et al. Improving fishing pattern detection from satellite AIS using data mining and machine learning[J]. PLoS One, 2016, 11(7):e0158248.
doi: 10.1371/journal.pone.0158248 |
[8] |
Kroodsma D A, Mayorga J, Hochberg T, et al. Tracking the global footprint of fisheries[J]. Science, 2018, 359(6378):904-908.
doi: 10.1126/science.aao5646 pmid: 29472481 |
[9] | Wang Y B, Wang Y. Estimating catches with Automatic Identification System (AIS) data: a case study of single otter trawl in Zhoushan fishing ground, China[J]. Iranian Journal of Fisheries Sciences, 2016, 15(1):75-90. |
[10] |
Le Guyader D, Ray C, Gourmelon F, et al. Defining high-resolution dredge fishing grounds with Automatic Identification System (AIS) data[J]. Aquatic Living Resources, 2017, 30:1-10.
doi: 10.1051/alr/2016034 |
[11] | 原作辉, 杨东海, 樊伟, 等. 基于卫星AIS的中西太平洋金枪鱼延绳钓渔场分布研究[J]. 海洋渔业, 2018, 40(6):649-659. |
[ Yuan Z H, Yang D H, Fan W, et al. On fishing grounds distribution of tuna longline based on satellite automatic identification system in the Western and Central Pacific[J]. Marine Fisheries, 2018, 40(6):649-659. ] | |
[12] |
Vespe M, Gibin M, Alessandrini A, et al. Mapping EU fishing activities using ship tracking data[J]. Journal of Maps, 2016, 12(sup1):520-525.
doi: 10.1080/17445647.2016.1195299 |
[13] |
Guiet J, Galbraith E, Kroodsma D, et al. Seasonal variability in global industrial fishing effort[J]. PLoS One, 2019, 14(5):e0216819.
doi: 10.1371/journal.pone.0216819 |
[14] | 刘柏静, 贾静, 吴晓青, 等. 基于AIS和多尺度空间模型的船舶活动时空特征及潜在压力[J]. 大连海事大学学报, 2018, 44(3):115-121,128. |
[ Liu B J, Jia J, Wu X Q, et al. Spatial-temporal features and potential pressure of marine vessel activities based on AIS and multi-scales spatial model[J]. Journal of Dalian Maritime University, 2018, 44(3):115-121,128. ] | |
[15] |
Russo T, D’Andrea L, Parisi A, et al. Assessing the fishing footprint using data integrated from different tracking devices: Issues and opportunities[J]. Ecological Indicators, 2016, 69:818-827.
doi: 10.1016/j.ecolind.2016.04.043 |
[16] | Tassetti A N, Ferrà C, Fabi G. Rating the effectiveness of fishery-regulated areas with AIS data[J]. Ocean & Coastal Management, 2019, 175:90-97. |
[17] | Le Tixerant M, Le Guyader D, Gourmelon F, et al. How can Automatic Identification System (AIS) data be used for maritime spatial planning?[J]. Ocean & Coastal Management, 2018, 166:18-30. |
[18] |
Natale F, Gibin M, Alessandrini A, et al. Mapping fishing effort through AIS data[J]. PLoS One, 2015, 10(6):e0130746.
doi: 10.1371/journal.pone.0130746 |
[19] |
陈仁丽, 王宜强, 刘柏静, 等. 基于GIS和AIS的渤海海上船舶活动时空特征分析[J]. 地理科学进展, 2020, 39(7):1172-1181.
doi: 10.18306/dlkxjz.2020.07.010 |
[ Chen R L, Wang Y Q, Liu B J, et al. Spatio-temporal characteristics of ship activities in the Bohai Sea based on GIS and AIS[J]. Progress in Geography, 2020, 39(7):1172-1181. ] | |
[20] | 朱姣, 刘敬贤, 陈笑, 等. 基于轨迹的内河船舶行为模式挖掘[J]. 交通信息与安全, 2017, 35(3):107-116,132. |
[ Zhu J, Liu J X, Chen X, et al. Behavior pattern mining of inland vessels based on trajectories[J]. Journal of Transport Information and Safety, 2017, 35(3):107-116,132. ] | |
[21] | 李连博, 牛佳伟, 刘军坡, 等. 基于AIS数据的海区通航危险度决策模型[J]. 中国航海, 2018, 41(3):68-75. |
[ Li L B, Niu J W, Liu J P, et al. AIS data-based navigation risk modeling[J]. Navigation of China, 2018, 41(3):68-75. ] | |
[22] |
梅强, 吴琳, 彭澎, 等. 南海区域商船典型空间分布及贸易流向研究[J]. 地球信息科学学报, 2018, 20(5):632-639.
doi: 10.12082/dqxxkx.2018.180017 |
[ Mei Q, Wu L, Peng P, et al. Typical spatial distribution of merchant vessels and trade flow in South China Sea[J]. Journal of Geo-Information Science, 2018, 20(5):632-639. ] | |
[23] | 金辉, 刘克中, 马杰, 等. 基于高斯混合模型的船舶到达规律研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(1):162-166. |
[ Jin H, Liu K Z, Ma J, et al. Research on vessel arrival rules based on Gaussian Mixture Model[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(1):162-166. ] | |
[24] | 禹文豪, 艾廷华. 核密度估计法支持下的网络空间POI点可视化与分析[J]. 测绘学报, 2015, 44(1):82-90. |
[ Yu W H, Ai T H. The visualization and analysis of POI features under network space supported by kernel density estimation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1):82-90. ] | |
[25] | 农业农村部渔业渔政管理局. 2019年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019. |
[ Fishery Administration Bureau of Ministry of Agriculture and Rural Affairs. China fishery statistical yearbook in 2019[M]. Beijing: China Agriculture Press, 2019. ] | |
[26] |
Fiorini M, Capata A, Bloisi D D. AIS data visualization for Maritime Spatial Planning (MSP)[J]. International Journal of e-Navigation and Maritime Economy, 2016, 5:45-60.
doi: 10.1016/j.enavi.2016.12.004 |
[27] |
Pauly D, Christensen V. Primary production required to sustain global fisheries[J]. Nature, 1995, 374(6519):255-257.
doi: 10.1038/374255a0 |
[28] |
Pikitch E K, Santora C, Babcock E A, et al. Ecosystem-based fishery management[J]. Science, 2004, 305(5682):346-347.
pmid: 15256658 |
[29] | 柯志新, 陈丹婷, 谭烨辉, 等. 汕头南澳-东山海域初级生产力的时空特征[J]. 中国水产科学, 2019, 26(1):44-52. |
[ Ke Z X, Chen D T, Tan Y H, et al. Temporal and spatial variations in primary production in the coastal region of Dongshan-Nan'ao[J]. Journal of Fishery Sciences of China, 2019, 26(1):44-52. ] | |
[30] | 逄志伟, 李显森, 朱建成, 等. 中东大西洋中部海域中上层鱼类中心渔场的时空变化[J]. 生态学杂志, 2016, 35(11):3072-3079. |
[ Pang Z W, Li X S, Zhu J C, et al. Spatiotemporal patterns of central fishing ground of pelagic fishes in the sea area of central Eastern Central Atlantic[J]. Chinese Journal of Ecology, 2016, 35(11):3072-3079. ] | |
[31] | 唐峰华, 崔雪森, 樊伟, 等. 公海柔鱼类资源丰度与海洋环境关系的研究[J]. 中国农业科技导报, 2016, 18(4):153-162. |
[ Tang F H, Cui X S, Fan W, et al. Study on relationship between resources abundance of squids and marine environment in high seas fishing grounds[J]. Journal of Agricultural Science and Technology, 2016, 18(4):153-162. ] | |
[32] | 唐峰华, 史赟荣, 朱金鑫, 等. 海洋环境因子对日本海太平洋褶柔鱼渔场时空分布的影响[J]. 中国水产科学, 2015, 22(5):1036-1043. |
[ Tang F H, Shi Y R, Zhu J X, et al. Influence of marine environment factors on temporal and spatial distribution of Japanese common squid fishing grounds in the Sea of Japan[J]. Journal of Fishery Sciences of China, 2015, 22(5):1036-1043. ] | |
[33] | O’Reilly J E, Maritorena S, Siegel D, et al. Ocean color chlorophyll-a algorithms for SeaWiFS, OC2, and OC4: Version 4[R]. SeaWiFS postlaunch calibration and validation analyses, Part 3. NASA Goddard Space Flight Center, 2000. |
[34] |
Wang Y Q, Liu D Y, Tang D L. Application of a Generalized Additive Model (GAM) for estimating chlorophyll-a concentration from MODIS data in the Bohai and Yellow Seas, China[J]. International Journal of Remote Sensing, 2017, 38(3):639-661.
doi: 10.1080/01431161.2016.1268733 |
[35] | Alvera-Azcárate A, Barth A, Beckers J M, et al. Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3):C03008. |
[36] |
Beckers J M, Barth A, Alvera-Azcárate A. DINEOF reconstruction of clouded images including error maps application to the sea-surface temperature around Corsican Island[J]. Ocean Science, 2006, 2(2):183-199.
doi: 10.5194/os-2-183-2006 |
[37] |
Wang Y Q, Liu D Y. Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: A case study in the Bohai and Yellow seas, China[J]. International Journal of Remote Sensing, 2014, 35(1):204-217.
doi: 10.1080/01431161.2013.866290 |
[38] |
Lambert G I, Jennings S, Hiddink J G, et al. Implications of using alternative methods of vessel monitoring system (VMS) data analysis to describe fishing activities and impacts[J]. ICES Journal of Marine Science, 2012, 69(4):682-693.
doi: 10.1093/icesjms/fss018 |
[39] | Powell R A. Animal home ranges and territories and home range estimators, in: Pearl MC, Boitani L, Fuller TK (Eds.), Research techniques in animal ecology[M]. Columbia University Press. Controversies and Consequences, 2nd edition, 2000. |
[40] | 禹文豪, 艾廷华, 杨敏, 等. 利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J]. 武汉大学学报·信息科学版, 2016, 41(2):221-227. |
[ Yu W H, Ai T H, Yang M, et al. Detecting“hot spots”of facility POIs based on kernel density estimation and spatial autocorrelation technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):221-227. ] | |
[41] |
Lamas L, Oliveira P B, Pinto J P, et al. Fishing areas characterisation using the SIMOcean platform[J]. Aquatic Living Resources, 2017, 30:19.
doi: 10.1051/alr/2017020 |
[42] |
Tang D L, Ni I H, Müller-Karger F E, et al. Monthly variation of pigment concentrations and seasonal winds in China's marginal seas[J]. Hydrobiologia, 2004, 511(1):1-15.
doi: 10.1023/B:HYDR.0000014001.43554.6f |
[43] |
Nurdin S, Mustapha M A, Lihan T, et al. Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia[J]. Fisheries Research, 2017, 196:1-12.
doi: 10.1016/j.fishres.2017.07.029 |
[44] |
Cai L N, Bu J, Tang D L, et al. Geosynchronous satellite GF-4 observations of chlorophyll-a distribution details in the Bohai sea, China[J]. Sensors, 2020, 20(19):5471.
doi: 10.3390/s20195471 |
[45] |
Zhang H L, Qiu Z F, Sun D Y, et al. Seasonal and interannual variability of satellite-derived chlorophyll-a (2000-2012) in the Bohai sea, China[J]. Remote Sensing, 2017, 9(6):582.
doi: 10.3390/rs9060582 |
[46] | 唐启升. 中国区域海洋学-渔业海洋学[M]. 北京: 海洋出版社, 2012. |
[ Tang Q S. Regional oceanography of China seas-fisheries oceanography[M]. Beijing: Ocean Press, 2012. ] | |
[47] | 农业部水产局. 黄、渤海区渔业资源调查与区划[M]. 北京: 海洋出版社, 1990. |
[ Fisheries Bureau of the Ministry of Agriculture. Investigations and divisions of fishery resources in the Yellow Sea and Bohai Sea[M]. Beijing: Ocean Press, 1990. ] | |
[48] |
Robards M D, Silber G K, Adams J D, et al. Conservation science and policy applications of the marine vessel Automatic Identification System (AIS): A review[J]. Bulletin of Marine Science, 2016, 92(1):75-103.
doi: 10.5343/bms.2015.1034 |
[49] |
Rowlands G, Brown J, Soule B, et al. Satellite surveillance of fishing vessel activity in the Ascension Island exclusive economic zone and marine protected area[J]. Marine Policy, 2019, 101:39-50.
doi: 10.1016/j.marpol.2018.11.006 |
[50] |
James M, Mendo T, Jones E L, et al. AIS data to inform small scale fisheries management and marine spatial planning[J]. Marine Policy, 2018, 91:113-121.
doi: 10.1016/j.marpol.2018.02.012 |
[51] |
Wawruch R. Study reliability of the information about the CPA and TCPA indicated by the ship's AIS[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2016, 10(3):417-424.
doi: 10.12716/1001 |
[1] | 黄隆杨, 王静, 李泽慧, 赵晓东, 刘晶晶, 方莹. 基于自然资源大数据的城市多功能景观识别与国土空间规划分区[J]. 地球信息科学学报, 2021, 23(9): 1617-1631. |
[2] | 张春森, 贾欣, 吴蓉蓉, 崔卫红, 史书, 郭丙轩. 面向对象高分遥感影像典型自然地物半自动提取[J]. 地球信息科学学报, 2021, 23(6): 1050-1062. |
[3] | 李晓恩, 周亮, 肖杨, 吴文周, 苏奋振, 石伟. 基于渔船AIS数据的南海北部海洋渔业捕捞强度空间特征挖掘[J]. 地球信息科学学报, 2021, 23(5): 850-859. |
[4] | 李颉, 郑步云, 王劲峰. 2008—2018年中国手足口病时空分异特征[J]. 地球信息科学学报, 2021, 23(3): 419-430. |
[5] | 甄荣, 邵哲平, 潘家财. 基于AIS数据的船舶行为特征挖掘与预测:研究进展与展望[J]. 地球信息科学学报, 2021, 23(12): 2111-2127. |
[6] | 贺彬, 吴文周, 康路, 苏奋振. 南海区域渔船活动时空特征分析[J]. 地球信息科学学报, 2021, 23(11): 2013-2024. |
[7] | 姚可桢, 岳书平. 网络大数据下的中国现代食甜习惯空间分布特征及其影响因素研究[J]. 地球信息科学学报, 2020, 22(6): 1202-1215. |
[8] | 董鹤松, 李仁杰, 李建明, 李帅. 基于DMSP-OLS与NPP-VIIRS整合数据的中国三大城市群城市空间扩展时空格局[J]. 地球信息科学学报, 2020, 22(5): 1161-1174. |
[9] | 王丽英, 赵元丁. 一种灰度体素结构分割模型下的机载LiDAR 3D滤波算法[J]. 地球信息科学学报, 2020, 22(11): 2118-2127. |
[10] | 孙小芳. 夜光遥感支持下的城市人口核密度空间化及自相关分析[J]. 地球信息科学学报, 2020, 22(11): 2256-2266. |
[11] | 鲍超,刘若文. 青藏高原城镇体系的时空演变[J]. 地球信息科学学报, 2019, 21(9): 1330-1340. |
[12] | 陈冰倩, 张友水, 程璟媛, 赵雪. 福州市地表温度热点及时空变化分析[J]. 地球信息科学学报, 2019, 21(5): 710-719. |
[13] | 邬群勇, 张良盼, 吴祖飞. 顾及空间异质性的出租载客与公交客流回归分析[J]. 地球信息科学学报, 2019, 21(3): 337-345. |
[14] | 王诚聪, 刘亚静, 刘明月. 全球恐怖袭击事件时空演变与态势分析[J]. 地球信息科学学报, 2019, 21(11): 1710-1720. |
[15] | 傅俐,王勇,曾彪,毛泳,高敏. 基于改进两步移动搜索法的北碚区医疗设施空间可达性分析[J]. 地球信息科学学报, 2019, 21(10): 1565-1575. |
|