地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (12): 2201-2214.doi: 10.12082/dqxxkx.2021.210129
收稿日期:
2021-03-14
修回日期:
2021-05-21
出版日期:
2021-12-25
发布日期:
2022-02-25
通讯作者:
*陈跃红(1987— ),男,四川遂宁人,副教授,主要从事地理大数据与空间智能研究。E-mail: chenyh@lreis.ac.cn作者简介:
祝开心(2000— ),男,广西灵山人,本科生,主要从事空间数据分析研究。E-mail: zhukaixin@hhu.edu.cn
基金资助:
ZHU Kaixin(), ZHANG Fengyan, LI Yuyu, CHEN Yuehong*(
)
Received:
2021-03-14
Revised:
2021-05-21
Online:
2021-12-25
Published:
2022-02-25
Supported by:
摘要:
快速城镇化导致我国城市消防应急服务基础设施与城市发展不同步的问题日益凸显,城市消防救援覆盖率评估是提升消防服务质量与优化消防资源配置的重要手段。本文提出一种基于实时路况的城市消防救援覆盖率评估模型,通过考虑消防站管辖区域的空间限制,在2020年9月连续三周时间内利用高德地图API获取消防站到达历史火灾事件的实时出行救援时间,对南京市消防救援覆盖率的时空模式进行分析与挖掘。结果显示:① 南京城市火灾密集区域(简称火灾密集区)消防站的平均出行救援时间约10 min,非火灾密集区约16 min,均比国家规定的5 min到达时间标准明显要长,导致南京市消防站在5 min到达标准下的覆盖率仅为8.2%;② 由于南京火灾密集区消防站的平均行车救援距离仅为非火灾密集区的37%,导致火灾密集区火灾事件等待救援时间明显低于非火灾密集区,尤其火灾密集区西南部、东北部及部分消防站周边火灾事件等待救援时间相对较短,但南京全区火灾事件等待救援时间在5 min以内的比例不足7%,且等待救援时间在5~10 min之间的短距离火灾事件受早晚交通出行高峰期交通拥堵影响最大;③ 南京市消防站救援覆盖率受早晚交通出行高峰影响呈现早晚交通出行高峰期明显低于其他时段的“W”形变化模式,火灾密集区消防站在5 min到达标准下的救援覆盖率从非交通出行高峰期的11.5%降低到交通出行高峰期的8.4%,而非火灾密集区从6.1%降低到5%,火灾密集区东南部石门坎与东山交界区域和北部汉中门与迈皋桥周边区域早晚交通出行高峰时段等待救援时间超过15 min的火灾事件比非交通出行高峰时段明显增多;④ 在5 min到达标准下,南京市消防站救援覆盖率“W”形模式波动最小,10 min到达标准下的平均覆盖率为43.5%且波动最明显,15 min到达标准下的平均覆盖率达到75%。最后根据分析结果给出了南京市消防未来建设发展意见。
祝开心, 张凤焰, 李余郁, 陈跃红. 实时路况支持下的南京市消防救援覆盖率时空模式分析[J]. 地球信息科学学报, 2021, 23(12): 2201-2214.DOI:10.12082/dqxxkx.2021.210129
ZHU Kaixin, ZHANG Fengyan, LI Yuyu, CHEN Yuehong. Spatiotemporal Pattern Analysis of Fire Service Coverage Rate in Nanjing from Real-time Road Conditions[J]. Journal of Geo-information Science, 2021, 23(12): 2201-2214.DOI:10.12082/dqxxkx.2021.210129
[1] | 杨翠迎. 城市化进程中公共服务资源配置面临的挑战与对策[J]. 甘肃社会科学, 2014(4):9-13. |
[ Yang C Y. Challenges and countermeasures of public service resource allocation in the process of urbanization[J]. Gansu Social Sciences, 2014(4):9-13. ] | |
[2] | Brushlinsky N, Ahrens M, Sokolov S, et al. World Fire Statistics No.25[R]. Russia: International Association of Fire and Rescue Services, 2020. |
[3] | 李燕萍, 虞虎, 王昊, 等. 面向大数据时代的城市规划研究响应与应对方略[J]. 城市发展研究, 2017, 24(10):1-10. |
[ Li Y P, Yu H, Wang H, et al. The response and countermeasures of urban planning research in the era of big data[J]. Urban Development Studies, 2017, 24(10):1-10. ] | |
[4] |
吴志峰, 柴彦威, 党安荣, 等. 地理学碰上“大数据”:热反应与冷思考[J]. 地理研究, 2015, 34(12):2207-2221.
doi: 10.11821/dlyj201512001 |
[ Wu Z F, Chai Y W, Dang A R, et al. Geography interact with big data: Dialogue and reflection[J]. Geographical Research, 2015, 34(12):2207-2221. ] | |
[5] | 宋波, 刘文晓, 孙亚光. 基于大数据+GIS技术的消防站布局规划——以洛阳市涧西区为例[J]. 中国应急救援, 2020(3):57-62. |
[ Song B, Liu W X, Sun Y G. Fire station layout planning based on big data + GIS technology: Taking the Jianxi district of Luoyang as an example[J]. China Emergency Rescue, 2020(3):57-62. ] | |
[6] |
Kc K, Corcoran J, Chhetri P. Spatial optimisation of fire service coverage: A case study of Brisbane, Australia[J]. Geographical Research, 2018, 56(3):270-284.
doi: 10.1111/geor.v56.3 |
[7] |
Zhang X X, Yao J, Sila-Nowicka K, et al. Urban fire dynamics and its association with urban growth: Evidence from Nanjing, China[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):218.
doi: 10.3390/ijgi9040218 |
[8] | 胡强. 山地城市避难场所可达性研究[D]. 重庆:重庆大学, 2010. |
[ Hu Q A. Mountain ous city shelter accessibility research[D]. Chongqing: Chongqing University, 2010. ] | |
[9] |
Kc K, Corcoran J, Chhetri P. Measuring the spatial accessibility to fire stations using enhanced floating catchment method[J]. Socio-Economic Planning Sciences, 2020, 69:100673.
doi: 10.1016/j.seps.2018.11.010 |
[10] | 熊雪晨, 白鸽, 金超, 等. 基于最近距离法的医疗服务地理可及性可视化表达方法及实证研究[J]. 中国卫生资源, 2016, 19(4):270-274. |
[ Xiong X C, Bai G, Jin C, et al. A method of calculating and visualizing spatial accessibility to health services based on the nearest distance method[J]. Chinese Health Resources, 2016, 19(4):270-274. ] | |
[11] | Luo W. Using a GIS-based floating catchment method to assess areas with shortage of physicians[J]. Health & Place, 2004, 10(1):1-11. |
[12] | Joseph L, Kuby M. Gravity Modeling and its Impacts on Location Analysis[M]. Springer US, 2011. |
[13] |
傅俐, 王勇, 曾彪, 等. 基于改进两步移动搜索法的北碚区医疗设施空间可达性分析[J]. 地球信息科学学报, 2019, 21(10):1565-1575.
doi: 10.12082/dqxxkx.2019.190188 |
[ Fu L, Wang Y, Zeng B A, et al. Spatial accessibility of medical facilities in Beibei district based on modified two-step floating catchment area method[J]. Journal of Geo-Information Science, 2019, 21(10):1565-1575. ] | |
[14] |
Xia Z L, Li H, Chen Y H, et al. Integrating spatial and non-spatial dimensions to measure urban fire service access[J]. ISPRS International Journal of Geo-Information, 2019, 8(3):138.
doi: 10.3390/ijgi8030138 |
[15] |
Mao K N, Chen Y H, Wu G H, et al. Measuring spatial accessibility of urban fire services using historical fire incidents in Nanjing, China[J]. ISPRS International Journal of Geo-Information, 2020, 9(10):585.
doi: 10.3390/ijgi9100585 |
[16] | 陶卓霖, 程杨, 戴特奇, 等. 公共服务设施布局优化模型研究进展与展望[J]. 城市规划, 2019, 43(8):60-68,88. |
[ Tao Z L, Cheng Y, Dai T Q, et al. Research progress and prospect of public service facilities layout optimization models[J]. City Planning Review, 2019, 43(8):60-68,88. ] | |
[17] | 刘莉, 陈晨. 一种GIS与集合覆盖法的消防区优化布局[J]. 测绘科学, 2018, 43(9):46-51. |
[ Liu L, Chen C. A GIS and set covering method for division of responsibility area of fireststions and layout optimization[J]. Science of Surveying and Mapping, 2018, 43(9):46-51. ] | |
[18] |
Murray A T. Maximal coverage location problem[J]. International Regional Science Review, 2016, 39(1):5-27.
doi: 10.1177/0160017615600222 |
[19] |
Tao Z L, Cheng Y, Dai T Q, et al. Spatial optimization of residential care facility locations in Beijing, China: Maximum equity in accessibility[J]. International Journal of Health Geographics, 2014, 13(1):1-11.
doi: 10.1186/1476-072X-13-1 |
[20] |
Yao J, Zhang X X, Murray A T. Location optimization of urban fire stations: Access and service coverage[J]. Computers, Environment and Urban Systems, 2019, 73:184-190.
doi: 10.1016/j.compenvurbsys.2018.10.006 |
[21] |
Shavandi H, Mahlooji H. A fuzzy queuing location model with a genetic algorithm for congested systems[J]. Applied Mathematics and Computation, 2006, 181(1):440-456.
doi: 10.1016/j.amc.2005.12.058 |
[22] |
Teixeira J C, Antunes A P. A hierarchical location model for public facility planning[J]. European Journal of Operational Research, 2008, 185(1):92-104.
doi: 10.1016/j.ejor.2006.12.027 |
[23] | 詹玮璇, 范威威, 刘明宇. 大数据环境下城市消防站救援覆盖能力评估[J]. 消防科学与技术, 2020, 39(4):519-521. |
[ Zhan W X, Fan W W, Liu M Y. Evaluation of service coverage capability of fire stations in big data environment[J]. Fire Science and Technology, 2020, 39(4):519-521. ] | |
[24] |
Liu D L, Xu Z S, Yan L, et al. Applying real-time travel times to estimate fire service coverage rate for high-rise buildings[J]. Applied Sciences, 2020, 10(19):6632.
doi: 10.3390/app10196632 |
[25] |
Liu D L, Xu Z S, Wang Z Y, et al. Estimation of effective coverage rate of fire station services based on real-time travel times[J]. Fire Safety Journal, 2021, 120:103021.
doi: 10.1016/j.firesaf.2020.103021 |
[26] | 江苏省第十一届人民代表大会常务委员会. 江苏省消防条例[Z]. 江苏省:江苏省第十一届人民代表大会常务委员会第十八次会议, 2010. |
[ Standing Committee of the 11th Jiangsu Province People's Congress. Fire Protection Regulations of Jiangsu Province[Z]. Jiangsu Province:The 18th Meeting of the Standing Committee of the 11th Jiangsu Provincial People's Congress, 2010. ] | |
[27] | 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 城市消防规划规范 GB 51080-2015[S]. 北京: 中国建筑工业出版社, 2015. |
[ Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for planning of urban fire control. GB 51080-2015[S]. Beijing: China Architecture & Building Press, 2015. ] | |
[28] | 张辉, 郭超. 基于GIS和响应覆盖率的消防救援站建设评估研究[J]. 消防科学与技术, 2020, 39(8):1107-1110. |
[ Zhang H, Guo C. Research on evaluation of fire rescue station construction based on GIS and ratio of response coverage[J]. Fire Science and Technology, 2020, 39(8):1107-1110. ] | |
[29] | 唐潭, 韩冰. 城市实时交通圈在消防布局评价中的应用研究——以南京市为例[C]. 2019 (第十四届)城市发展与规划大会,郑州,中国, 2019. |
[ Tang T, Han B. Application research of urban real-time traffic circle in fire layout evaluation: Take Nanjing City as an example[C]. 2019 (the Fourteenth) Conference on Urban Development and Planning, Zhengzhou, China, 2019. ] | |
[30] | 王芹, 谢元礼, 段汉明, 等. 基于实时路况的西安交通拥堵研究[J]. 西北大学学报(自然科学版), 2017, 47(4):622-626. |
[ Wang Q, Xie Y L, Duan H M, et al. On Xi'an traffic congestion based on real-time traffic data[J]. Journal of Northwest University (Natural Science Edition), 2017, 47(4):622-626. ] | |
[31] |
崔晓临, 张佳蓓, 吴锋, 等. 基于多源数据融合的北京市人口时空动态分析[J]. 地球信息科学学报, 2020, 22(11):2199-2211.
doi: 10.12082/dqxxkx.2020.190769 |
[ Cui X L, Zhang J B, Wu F, et al. Spatio-temporal analysis of population dynamics based on Multi-source data integration for Beijing municipal city[J]. Journal of Geo-information Science, 2020, 22(11):2199-2211. ] | |
[32] |
邓敏, 蔡建南, 杨文涛, 等. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1):41-56.
doi: 10.12082/dqxxkx.2020.190491 |
[ Deng M, Cai J N, Yang W T, et al. Spatio-temporal analysis methods for multi-modal geographic big data[J]. Journal of Geo-information Science, 2020, 22(1):41-56. ] | |
[33] | 南京市统计局. 南京统计年鉴2020[M]. 北京: 中国统计出版社, 2020. |
[ Nanjing Municipal Bureau Statistics. Nanjing Statistical Yearbook 2020[M]. Beijing: China Statistical Publishing House, 2020. ] | |
[34] |
Kc K, Corcoran J. Modelling residential fire incident response times: A spatial analytic approach[J]. Applied Geography, 2017, 84:64-74.
doi: 10.1016/j.apgeog.2017.03.004 |
[35] |
Usanov D, Guido Legemaate G A, van de Ven P M, et al. Fire truck relocation during major incidents[J]. Naval Research Logistics (NRL), 2019, 66(2):105-122.
doi: 10.1002/nav.v66.2 |
[36] | 南京市规划和自然资源局. 南京市城市总体规划(2011-2020)[EB/OL]. http://ghj.nanjing.gov.cn/ghbz/ztgh/201705/t20170509_874089.html,2020-05-26. |
[Nanjing Bureau of Planning and Natural Resources. Nanjing Urban Master Plan(2011-2020)[EB/OL]. http://ghj.nanjing.gov.cn/ghbz/ztgh/201705/t20170509_874089.html,2020-05-26. ] | |
[37] |
Wang F H, Xu Y Q. Estimating O-D travel time matrix by Google Maps API: Implementation, advantages, and implications[J]. Annals of GIS, 2011, 17(4):199-209.
doi: 10.1080/19475683.2011.625977 |
[38] | 第十三届全国人民代表大会常务委员会. 中华人民共和国消防法[Z]. 北京:第十三届全国人民代表大会常务委员会第十次会议, 2019. |
[ Standing Committee of the 13th National People's Congress. Fire Protection Law of the People's Republic of China[Z]. Beijing:The 10th Session of the Standing Committee of the 13th National People's Congress, 2019. ] | |
[39] | 高德地图. 中国主要城市季度交通分析报告——南京市(2018Q1)[EB/OL]. https://report.amap.com/share.do?id=8a38bb8666c9a6d20166cd63d5370440, 2018-04-19. |
[Amap. Quarterly traffic analysis report of major cities in China: Nanjing (2018Q1)[EB/OL]. https://report.amap.com/share.do?id=8a38bb8666c9a6d20166cd63d5370440, 2018-04-19. ] | |
[40] | 高德地图. 中国主要城市季度交通分析报告——南京市(2020Q2)[EB/OL]. https://report.amap.com/share.do?id=8b3776ab731fb18401737b0e006b449a, 2020-07-21. |
[Amap. Quarterly traffic analysis report of major cities in China: Nanjing (2020Q2)[EB/OL]. https://report.amap.com/share.do?id=8b3776ab731fb18401737b0e006b449a, 2020-07-21. ] | |
[41] | 高德地图. 中国主要城市季度交通分析报告——南京市(2020Q3)[EB/OL]. https://report.amap.com/share.do?id=a184b07a753f1d930175547ba5ec1e15, 2020-10-23. |
[Amap. Quarterly traffic analysis report of major cities in China: Nanjing (2020Q3)[EB/OL]. https://report.amap.com/share.do?id=a184b07a753f1d930175547ba5ec1e15, 2020-10-23. ] | |
[42] | 高德地图. 中国主要城市季度交通分析报告——南京市(2020Q4)[EB/OL]. https://report.amap.com/share.do?id=a187b9ae76d07e5c017714372ba90137, 2021-01-18. |
[ Amap. Quarterly traffic analysis report of major cities in China: Nanjing (2020Q4)[EB/OL]. https://report.amap.com/share.do?id=a187b9ae76d07e5c017714372ba90137, 2021-01-18. ] | |
[43] | 王昆仑, 王龙鑫. 浅析城市消防站优化布局[C]. 中国消防协会六届七次理事会暨2019年科学技术年会,北京,中国, 2019. |
[ Wang K L, Wang L X. A brief analysis of optimal layout of urban fire station[C]. The 7th Council of the 6th session of China Fire Protection Association & 2019 Annual Meeting of Science and Technology, Beijing, China, 2019. ] |
[1] | 秦佳睿, 盛业华, 王燕锋, 何育枫. 南京市住宅价格影响因素分析[J]. 地球信息科学学报, 2021, 23(5): 882-890. |
[2] | 裴韬, 王席, 宋辞, 刘亚溪, 黄强, 舒华, 陈晓, 郭思慧, 周成虎. COVID-19疫情时空分析与建模研究进展[J]. 地球信息科学学报, 2021, 23(2): 188-210. |
[3] | 郑晓琳, 刘启亮, 刘文凯, 吴智慧. 智能卡和出租车轨迹数据中蕴含城市人群活动模式的差异性分析[J]. 地球信息科学学报, 2020, 22(6): 1268-1281. |
[4] | 聂拼, 梁明, 李玉洁, 游欣妍, 孙晓娟. 基于最邻近时空距离的土地变化过程时空模式分析[J]. 地球信息科学学报, 2020, 22(3): 628-637. |
[5] | 陈杰, 李昂, 符峥, 李思倩, 王结臣. 公交模式对公共服务设施可达性的影响[J]. 地球信息科学学报, 2019, 21(7): 983-993. |
[6] | 符海月, 张祎婷. 时间尺度重构EEMD-GRNN改进模型预测PM2.5的研究[J]. 地球信息科学学报, 2019, 21(7): 1132-1142. |
[7] | 曹阳, 葛军莲, 龙毅, 张翎. 时空协同的城市旅游行程规划模型构建[J]. 地球信息科学学报, 2019, 21(6): 814-825. |
[8] | 尹上岗, 李在军, 宋伟轩, 马志飞. 基于地理探测器的南京市住宅租金空间分异格局及驱动因素研究[J]. 地球信息科学学报, 2018, 20(8): 1139-1149. |
[9] | 周洋, 祝善友, 华俊玮, 刘祎, 向嘉敏, 丁文. 南京市高温热浪时空分布研究[J]. 地球信息科学学报, 2018, 20(11): 1613-1621. |
[10] | 杨喜平, 方志祥, 赵志远, 萧世伦, 尹凌. 城市人群聚集消散时空模式探索分析——以深圳市为例[J]. 地球信息科学学报, 2016, 18(4): 486-492. |
[11] | 乔伟峰, 毛广雄, 王亚华, 陈月娇. 近32年来南京城市扩展与土地利用演变研究[J]. 地球信息科学学报, 2016, 18(2): 200-209. |
[12] | 朱寿佳, 甄峰, 秦萧, 何伊伊. 基于核密度估计的南京二手房活跃度特征及影响机制研究[J]. 地球信息科学学报, 2015, 17(6): 698-704. |
[13] | 乔伟峰, 刘彦随, 王亚华, 项灵志. 城市三维重心算法与实验分析——以南京市为例[J]. 地球信息科学学报, 2015, 17(3): 268-273. |
[14] | 叶娟娟, 杨昕, 熊礼阳, 严艳梓, 王婷婷. 南京市老城区城市建筑点格局研究[J]. 地球信息科学学报, 2015, 17(11): 1404-1411. |
[15] | 苏曦, 陈江龙, 袁丰. 国有商业银行与股份制商业银行的空间布局特征分析——以南京市江南8区为例[J]. 地球信息科学学报, 2013, 15(5): 712-718. |
|