地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (11): 1910-1923.doi: 10.12082/dqxxkx.2021.210133
• 专栏:全球新型冠状病毒肺炎(COVID-19)疫情时空建模与决策分析 • 上一篇 下一篇
崔明洁1,2(), 姚霞2,4, 方昊然2,5, 张杨成思2,6, 杨德刚1,2, 裴韬2,3,*(
)
收稿日期:
2021-03-16
修回日期:
2021-05-25
出版日期:
2021-11-25
发布日期:
2022-01-25
通讯作者:
*裴韬(1972— ),男,江苏扬州人,研究员,研究方向为地理大数据挖掘、地统计分析。E-mail: peit@lreis.ac.cn作者简介:
崔明洁(1997— ),女,河南商丘人,硕士生,研究方向为区域发展。E-mail: cuimingjie19@mails.ucas.ac.cn
基金资助:
CUI Mingjie1,2(), YAO Xia2,4, FANG Haoran2,5, ZHANG Yangchengsi2,6, YANG Degang1,2, PEI Tao2,3,*(
)
Received:
2021-03-16
Revised:
2021-05-25
Online:
2021-11-25
Published:
2022-01-25
Supported by:
摘要:
SARS和COVID-19的暴发对我国公众健康、社会经济等造成了严重影响,为揭示呼吸道烈性传染病的时空传播的共性规律和差异特征及背后原因,运用时空统计方法,系统分析并对比了SARS与COVID-19的时空传播差异性特征,并结合病毒本身传播特性及交通、温度等因子进行原因分析。研究表明:① 时间序列上,SARS从发病初始到结束经历了2个阶段,即上升期-平缓期,COVID-19经历了3个阶段,即上升期-急剧上升期-缓升期。② 空间传播模式上,COVID-19传播强度及传播范围大于SARS,且COVID-19的整体连通性较大,各省份与病毒暴发地的联系更为紧密;SARS和COVID-19的传播都存在明显的空间聚集性特征;二者均以邻近传播、远距离飞跃式为主,且SARS存在中次级传播中心,COVID-19扩散中心未发生转移。③ 空间传播方向上,SARS以北京市、香港特别行政区、广东省为中心,空间传播方向性更强,COVID-19仅以湖北省为中心向外扩散。④ 空间传播速度上,SARS各省份首例病例传播时间跨度较大,COVID-19各个省份首例病例传播时间大致以胡焕庸线为分界线,呈现出“东快西慢”的现象,传播时间跨度较短。⑤ R0是造成SARS和COVID-19空间传播范围与空间传播速度差异的主要原因;SARS和COVID-19病毒温度适宜性有所差异,但在温度接近的区域均发生了空间聚集性传播和邻近区域传播;除病毒本身传播能力、温度影响外,交通是影响SARS和COVID-19空间远距离飞跃式传播的主要原因,二者空间传播速度均与路网密度呈负相关关系。
崔明洁, 姚霞, 方昊然, 张杨成思, 杨德刚, 裴韬. SARS与COVID-19时空传播差异性及影响因素分析[J]. 地球信息科学学报, 2021, 23(11): 1910-1923.DOI:10.12082/dqxxkx.2021.210133
CUI Mingjie, YAO Xia, FANG Haoran, ZHANG Yangchengsi, YANG Degang, PEI Tao. Spatial and Temporal Transmission Differences between SARS and COVID-19 and Analysis of Influence Factors[J]. Journal of Geo-information Science, 2021, 23(11): 1910-1923.DOI:10.12082/dqxxkx.2021.210133
[1] |
Xia S, Liu M Q, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion[J]. Cell Research, 2020, 30(4):343-355.
doi: 10.1038/s41422-020-0305-x |
[2] | 李鹏. 新冠病毒和SARS病毒是什么关系?[N]. 北京科技报, 2020-02-17(5). |
[ Li P. What is the relationship between the new coronavirus and the SARS virus?[N]. Beijing Science and Technology News, 2020-02-17(5). ] | |
[3] | 武继磊, 王劲峰, 孟斌, 等. 2003年北京市SARS疫情空间相关性分析[J]. 浙江大学学报(农业与生命科学版), 2005, 31(1):97-101. |
[ Wu J L, Wang J F, Meng B, et al. Spatial association analysis on epidemic of SARS in Beijing, 2003[J]. Journal of Zhejiang University(Agric. & Life Sci.), 2005, 31(1):97-101. ] | |
[4] | 叶沿林, 庞丹阳, 刘循序. SARS疫情分析及对北京疫情走势的预测[J]. 物理, 2003(5):345-347. |
[ Ye Y L, Pang D Y, Liu X X. Analysis of the current SARS epidemic and the forecast for Beijing[J]. Physics, 2003(5):345-347. ] | |
[5] | 胡碧松, 龚建华, 周洁萍, 等. 疾病传播输入输出流的时空特征分析—以北京SARS流行为例[J]. 中国科学:地球科学, 2013, 43(9):1499-1517. |
[ Hu B S, Gong J H, Zhou J P, et al. Spatial-temporal characteristics of epidemic spread in-out flow-Using SARS epidemic in Beijing as a case study. Scientia Sinica(Terrae), 2013, 43(9):1499-1517. ] | |
[6] |
Zhang Z B. The outbreak pattern of SARS cases in China as revealed by a mathematical model[J]. Ecological Modelling, 2007, 204(3):420-426.
doi: 10.1016/j.ecolmodel.2007.01.020 |
[7] | 石耀霖. SARS传染扩散的动力学随机模型[J]. 科学通报, 2003(13):1373-1377. |
[ Shi Y L. A dynamic random model of the spread of SARS infection[J]. Chinese Science Bulletin, 2003(13):1373-1377. ] | |
[8] | 刘玉, 牛树海, 刘毅. 中国SARS的时空分布特征[J]. 科学新闻, 2003(9):4-5. |
[ Liu Y, Niu S H, Liu Y. The spatial and time distribution characteristics of SARS in China[J]. Science News, 2003(9):4-5. ] | |
[9] |
Wang J F, McMichael A J, Meng B, et al. Spatial dynamics of an epidemic of severe acute respiratory syndrome in an urban area.[J]. Bulletin of the World Health Organization, 2006, 84(12):965-968.
doi: 10.2471/BLT.00.000000 |
[10] | 曹志冬, 曾大军, 郑晓龙, 等. 北京市SARS流行的特征与时空传播规律[J]. 中国科学:地球科学, 2010, 40(6):776-788. |
[ Cao Z D, Zeng D J, Zheng X L, et al. The popular characteristics of SARS in Beijing and the law of space-time communication[J]. Scientia Sinica(Terrae), 2010, 40(6):776-788. ] | |
[11] | 王聪, 严洁, 王旭, 等. 新型冠状病毒肺炎早期时空传播特征分析[J]. 物理学报, 2020, 69(8):249-258. |
[ Wang C, Yan J, Wang X, et al. Analysis of the characteristics of early space-time transmission of new coronavirus pneumonia[J]. Acta Physica Sinica, 2020, 69(8):249-258.] | |
[12] | 张原, 尤翀, 蔡振豪, 等. 新冠肺炎(COVID-19)新型随机传播动力学模型及应用[J]. 应用数学学报, 2020, 43(2):440-451. |
[ Zhang Y, You C, Cai Z H, et al. A new stochastic dynamics model for COVID-19 and its application[J]. Acta Mathematicae Applicatae Sinica, 2020, 43(2):440-451. ] | |
[13] | 李栋, 白瑞瑞. 新型冠状病毒传播仿真组合模型[J]. 统计与决策, 2020, 36(5):5-10. |
[ Li D, Bai R R. A new combination model of coronavirus transmission simulation[J]. Statistics & Decision, 2020, 36(5):5-10. ] | |
[14] |
Qin L, Sun Q, Wang Y D, et al. Prediction of Number of Cases of 2019 Novel Coronavirus (COVID-19) Using Social Media Search Index[J]. International Journal of Environmental Research and Public Health, 2020, 17(7), DOI: 10.3390/ijerph17072365.
doi: 10.3390/ijerph17072365 |
[15] | 邵俊杰, 禹世雄, 高婧婧, 等. 基于SEIR模型的中国山东省与韩国COVID-19疫情早期传播特征比较分析[J]. 华中师范大学学报(自然科学版), 2020, 54(6):1072-1077. |
[ Shao J J, Yu S X, Gao J J, et al. Comparative analysis of the early transmission characteristics of COVID-19 epidemic between Shandong Province in China and South Korea based on the SEIR model[J]. Journal of Central China Normal University(Natural Sciences), 2020, 54(6):1072-1077. ] | |
[16] |
Qi H C, Xiao S, Shi R Y, et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis[J]. Science of The Total Environment, 2020, 728, DOI: 10.1016/j.scitotenv.2020.138778.
doi: 10.1016/j.scitotenv.2020.138778 |
[17] |
Shi P, Dong Y Q, Yan H C. Impact of temperature on the dynamics of the COVID-19 outbreak in China[J]. Science of The Total Environment, 2020, 728, DOI: 10.1016/j.scitotenv.2020.138890.
doi: 10.1016/j.scitotenv.2020.138890 |
[18] | Park J E, Son W S, Ryu Y, et al. Effects of temperature, humidity, and diurnal temperature range on influenza incidence in a temperate region[J]. Influenza Other Respirtory Viruses, 2020, 14(1):11-18. |
[19] |
Ficetola G F, Rubolini D. Containment measures limit environmental effects on COVID-19 early outbreak dynamics[J]. Science of The Total Environment, 2021, 761, DOI: 10.1016/j.scitotenv.2020.144432.
doi: 10.1016/j.scitotenv.2020.144432 |
[20] | Matto C, Jessica T. Davi S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus(COVID-19) outbreak[J]. Multidisciplinary Sciences, 2020, 368(6489):395-405. |
[21] | 周成虎, 裴韬, 杜云艳, 等. 新冠肺炎疫情大数据分析与区域防控政策建议[J]. 中国科学院院刊, 2020, 35(2):200-203. |
[ Zhou C H, Pei T, Du Y Y, et al. Big Data Analysis on COVID-19 Epidemic and Suggestions on Regional Prevention and Control Policy[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(2):200-203. ] | |
[22] |
Lai S J, Nick R, Zhou L C, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China.[J]. Nature, 2020, 585(7825):410-416.
doi: 10.1038/s41586-020-2293-x |
[23] |
Nick R, Jessica F, Lai S J. Assessing the impact of coordinated COVID-19 exit strategies across Europe[J]. Science, 2020, 369(6510):1465-1470.
doi: 10.1126/science.abc5096 |
[24] |
Lian X B, Huang J P, Huang R J, et al. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city[J]. Science of The Total Environment, 2020, 742, DOI: 10.1016/j.scitotenv.2020.140556.
doi: 10.1016/j.scitotenv.2020.140556 |
[25] | Lian X B, Huang J P, Zhang L, et al. Environmental Indicator for COVID-19 Non-Pharmaceutical Interventions[J]. Geophysical Research Letters, 2021, 48(2):1-8. |
[26] | 范新生, 应龙根. 中国SARS疫情的探索性空间数据分析[J]. 地球科学进展, 2005(3):282-291. |
[ Fan X S, Long Y G. Exploratory spatial data analysis of SARS outbreak in China[J]. Advances in Earth Science, 2005(3):282-291. ] | |
[27] | 王定明, 冯子建, 杨维中, 等. 中国24省、市、自治区SARS首发临床确诊病例分析[J]. 中华流行病学杂志, 2004, 25(1):37-38. |
[ Wang D M, Feng Z J, Yang W Z, et al. Analysis of SARS first clinically confirmed cases in 24 provinces, municipalities and autonomous regions of China[J]. Chinese Journal of Epidemiology, 2004, 25(1):37-38. ] | |
[28] | 中国网[EB/OL]. http://www.sars.china.com.cn. |
[China network[EB/OL]. http://www.sars.china.com.cn. ] | |
[29] | 世界卫生组织[EB/OL].https://www.who.int/csr/sars/en/. |
[Word health organization[EB/OL]. https://www.who.int/csr/sars/en/.] | |
[30] | 天气网[EB/OL]. https://m.tianqi.com/lishi/. |
[Weather network[EB/OL]. https://m.tianqi.com/lishi/.] | |
[31] | 国家统计局. 中国统计年鉴2004[M]. 北京: 中国统计出版社, 2004. |
[National Bureau of Statistics. China statistical yearbook 2004[M]. Beijing: China Statistical Press, 2004.] | |
[32] | 国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020. |
[National Bureau of Statistics. China statistical yearbook 2020[M]. Beijing: China Statistical Press, 2020. ] | |
[33] | OpenStreetMap[EB/OL]. https://www.openstreetmap.org/. |
[34] |
Pascual H L, Saura S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation[J]. Landscape Ecology, 2006, 21:959-967.
doi: 10.1007/s10980-006-0013-z |
[35] | Tobler W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 3(2):234-240. |
[36] |
Wang J F, Zhang T L, Fu B J. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67:250-256.
doi: 10.1016/j.ecolind.2016.02.052 |
[37] | Moran P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 58:1246-1266. |
[38] | 王劲峰, 廖一兰, 刘鑫. 空间数据分析教程(第二版)[M]. 北京: 科学出版社, 2019. |
[ Wang J F, Liao Y L, Liu X. Spatial Data Analysis Tutorial (2nd Edition)[M]. Beijing: Science Press, 2019. ] | |
[39] |
沈中健, 曾坚. 闽南三市城镇发展与地表温度的空间关系[J]. 地理学报, 2021, 76(3):566-583.
doi: 10.11821/dlxb202103006 |
[ Shen Z J, Zeng J. Spatial relationship of urban development to land surface temperature in three cities of southern Fujian[J]. Acta Geographica Sinica, 2021, 76(3):566-583. ] | |
[40] |
李颉, 郑步云, 王劲峰. 2008—2018年中国手足口病时空分异特征[J]. 地球信息科学学报, 2021, 23(3):419-430.
doi: 10.12082/dqxxkx.2021.190778 |
[ Li J, Zheng B Y, Wang J F. Spatial-temporal Heterogeneity of Hand, Foot and Mouth Disease in China from 2008 to 2018[J]. Journal of Geo-information Science, 2021, 23(3):419-430. ] | |
[41] |
Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics and control of severe acute respiratory syndrome[J]. Science, 2003, 300(5627):1966-1970.
pmid: 12766207 |
[42] | Jonathan M R, Jessica R E B, Derek A T C, et al. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions[J]. medRxiv, 2020, DOI: http://dx.doi.org/10.1101/2020.01.23.20018549. |
[43] |
Yue T X, Fan B, Zhao Y P, et al. Dynamics of the COVID-19 basic reproduction numbers in different countries[J]. Science Bulletin, 2021, 66(3):229-232.
doi: 10.1016/j.scib.2020.10.008 |
[44] | 陈嘉敏, 邱增钊, 钟舒怡, 等. 基于系统综述的新型冠状病毒肺炎与2009年H1N1流感大流行基本传染数研究[J]. 疾病监测, 2020, 35(12):1088-1099. |
[ Chen J M, Qiu Z Z, Zhong S Y, et al. Study of R0 of COVID-19 and pandemic influenza A (H1N1) 2009 based on systematic review[J]. Disease Surveillance, 2020, 35(12):1088-1099. ] | |
[45] |
Zhou C H, Su F Z, Pei T, et al. COVID-19: Challenges to GIS with Big Data[J]. Geography and Sustainability, 2020, 1(1):77-87.
doi: 10.1016/j.geosus.2020.03.005 |
[46] | 汪海英, 荣峰, 柯孚久, 等. 严重急性呼吸综合征(SARS)的传播与控制动力学[J]. 科学通报, 2003(18):1933-1935. |
[ Wang H Y, Rong F, Ke F J, et al., Transmission and control dynamics of Severe Acute Respiratory Syndrome (SARS)[J]. Chinese Science Bulletin, 2003(18):1933-1935. ] | |
[47] |
Chen S M, Yang J T, Yang W Z, et al. COVID-19 control in China during mass population movements at New Year[J]. The Lancet, 2020, 395(10226):764-766.
doi: 10.1016/S0140-6736(20)30421-9 |
[48] |
Huang J P, Zhang L, Liu X Y, et al. Global prediction system for COVID-19 pandemic[J]. Science Bulletin, 2020, 65(22):1884-1887.
doi: 10.1016/j.scib.2020.08.002 |
[49] |
金凤君, 陈卓. 1978年改革开放以来中国交通地理格局演变与规律[J]. 地理学报, 2019, 74(10):1941-1961.
doi: 10.11821/dlxb201910001 |
[ Jin F J, Chen Z. Evolution of transportation in China since reform and opening-up: Patterns and principles[J]. Acta Geographica Sinica, 2019, 74(10):1941-1961. ] | |
[50] |
王姣娥, 杜德林, 魏冶, 等. 新冠肺炎疫情的空间扩散过程与模式研究[J]. 地理研究, 2020, 39(7):1450-1462.
doi: 10.11821/dlyj020200329 |
[ Wang J E, Du D L, Wei Y, et al. The development of COVID-19 in China: Spatial diffusion and geographical pattern[J]. GeographicalResearch, 2020, 39(7):1450-1462. ] | |
[51] | 万里阳, 万千. 高铁网络与流行病跨城传播——来自COVID-19疫情防控的经验分析[J]. 产业经济评论, 2020(2):37-48. |
[ Wan L Y, Wan Q. The High-speed Railway Network and the Cross-town Transmission of Epidemics: Evidence from Chinese COVID-19[J]. Review of Industrial Economics, 2020(2):37-48. ] | |
[52] | 张旭, 霍爱梅, 姚晓丽, 等. 空间分析技术在研究传染病时空传播规律中的应用[J]. 测绘与空间地理信息, 2015, 38(7):79-81. |
[ Zhang X, Huo A M, Yao X L, et al. Application of Spatial Analysis Techniques in the Temporal Spread Pattern Study of Infectious Diseases[J]. Geomatics & Spatial Information Technology, 2015, 38(7):79-81. ] | |
[53] | 卓家同, 郑志刚, 耿文奎. SARS病原、宿主及传播途径研究进展[J]. 应用预防医学, 2008(3):187-189. |
[ Zhuo J T, Zheng Z G, Geng W K. Advances in the study of SARS pathogens, hosts and transmission routes[J]. Applied Preventive Medicine, 2008(3):187-189. ] | |
[54] |
Wu Z Y, Mcgoogan J M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention[J]. JAMA-Journal of the American Medical Association, 2020, 323(13):1239-1242.
doi: 10.1001/jama.2020.2648 |
[55] | 张亦汉, 刘婉华, 许晓聪, 等. 中国大陆机场的空间分布及其可达性分析[J]. 中山大学学报(自然科学版), 2019, 58(6):56-63. |
[ Zhang Y H, Liu W H, Xu X C, et al. Spatial distribution and accessibility analysis of airports in mainland China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(6):56-63. ] | |
[56] | 王正行, 张建玮, 唐毅南. 北京SARS疫情走势的模型分析与预测[J]. 物理, 2003(5):341-344. |
[ Wang Z X, Zhang J W, Tang Y N. A model analysis and evaluation of the SARS epidemic in Beijing[J]. Physics, 2003(5):341-344. ] | |
[57] | 王铮, 蔡砥, 李山, 等. 中国SARS流行的季节性风险探讨[J]. 地理研究, 2003(5):541-550. |
[ Wang Z, Cai D, Li S, et al. On season risk of the prevalence of SARS in China[J]. Geographical Research, 2003(5):541-550. ] | |
[58] | 俞顺章, 谈建国, 穆丽娜. 影响SARS爆发和流行的气象因素浅析[J]. 上海预防医学杂志, 2003, 15(12):600-601. |
[ Yu S Z, Tan J G, Mu L N. An analysis of meteorological factors affecting SARS outbreaks and epidemics[J]. Shanghai Journal of Preventive Medicine, 2003, 15(12):600-601. ] | |
[59] | Gao P C, Zhang H, Wu Z W, et al. Visualising the expansion and spread of coronavirus disease 2019 by cartograms[J]. Environment and Planning A-Economy and Space, 2020, 52(4):698-701. |
[1] | 卞萌, 郭树毅, 王威, 欧阳昱晖, 黄颖菁, 费腾. 融合植被遥感数据的北京市次日花粉浓度预测[J]. 地球信息科学学报, 2021, 23(9): 1705-1713. |
[2] | 葛中曦, 黄静, 赖佩玉, 郝斌飞, 赵银军, 马明国. 耕地复种指数遥感监测研究进展[J]. 地球信息科学学报, 2021, 23(7): 1169-1184. |
[3] | 冯子钰, 施润和. 中国近地面PM2.5浓度与排放的时空分布及其关联分析[J]. 地球信息科学学报, 2021, 23(7): 1221-1230. |
[4] | 姜伊兰, 陈保旺, 黄玉芳, 崔佳琪, 郭宇龙. 基于Google Earth Engine和NDVI时序差异指数的作物种植区提取[J]. 地球信息科学学报, 2021, 23(5): 938-947. |
[5] | 谢聪慧, 吴世新, 张晨, 孙文涛, 何海芳, 裴韬, 罗格平. 基于谱系聚类的全球各国新冠疫情时间序列特征分析[J]. 地球信息科学学报, 2021, 23(2): 236-245. |
[6] | 巫细波, 赖长强, 葛志专. 政府严控期我国地级市COVID-19疫情的时空集聚、演变及自相关效应研究[J]. 地球信息科学学报, 2021, 23(2): 246-258. |
[7] | 毕佳, 王贤敏, 胡跃译, 罗孟涵, 张俊华, 胡凤昌, 丁子洋. 一种基于改进SEIR模型的突发公共卫生事件风险动态评估与预测方法——以欧洲十国COVID-19为例[J]. 地球信息科学学报, 2021, 23(2): 259-273. |
[8] | 韦原原, 江南, 陈云海, 李响, 杨振凯. 顾及时空对象空间相互作用的疫情风险评估建模与应用[J]. 地球信息科学学报, 2021, 23(2): 274-283. |
[9] | 方云皓, 顾康康. 基于多元数据的中国地理空间疫情风险评估探索——以2020年1月1日至4月11日COVID-19疫情数据为例[J]. 地球信息科学学报, 2021, 23(2): 284-296. |
[10] | 曹中浩, 张健钦, 杨木, 贾礼朋, 邓少存. 基于GIS新冠智能体仿真模型及应用——以广州市为例[J]. 地球信息科学学报, 2021, 23(2): 297-306. |
[11] | 杜毅贤, 徐家鹏, 钟琳颖, 侯盈旭, 沈婕. 网络舆情态势及情感多维特征分析与可视化——以COVID-19疫情为例[J]. 地球信息科学学报, 2021, 23(2): 318-330. |
[12] | 李照, 高惠瑛, 代晓奕, 孙海. 一种耦合LSTM算法和云模型的疫情传播风险预测模型[J]. 地球信息科学学报, 2021, 23(11): 1924-1925. |
[13] | 张浩, 尹凌, 刘康, 毛亮, 冯圣中, 陈洁, 梅树江. 深圳市快速抑制COVID-19疫情的非药物干预措施效果评估:基于智能体的建模研究[J]. 地球信息科学学报, 2021, 23(11): 1936-1945. |
[14] | 尹凌, 刘康, 张浩, 奚桂锴, 李璇, 李子垠, 薛建章. 耦合人群移动的COVID-19传染病模型研究进展[J]. 地球信息科学学报, 2021, 23(11): 1894-1909. |
[15] | 刘新, 赵宁, 郭金运, 郭斌. 基于LSTM神经网络的青藏高原月降水量预测[J]. 地球信息科学学报, 2020, 22(8): 1617-1629. |
|