地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (12): 2275-2291.doi: 10.12082/dqxxkx.2021.210233
收稿日期:
2021-04-27
修回日期:
2021-06-18
出版日期:
2021-12-25
发布日期:
2022-02-25
通讯作者:
*张雪红(1980— ),男,江西余干人,博士,副教授,主要从事农业遥感、气象生态遥感等研究。 E-mail: zxhbnu@nuist.edu.cn作者简介:
姜 楠(1998— ),男,江西南昌人,硕士生,主要研究方向为农业遥感。E-mail: hqyjiang@163.com
基金资助:
JIANG Nan1(), ZHANG Xuehong1,2,*(
), WEN Jianlong3, GE Zhouhui1
Received:
2021-04-27
Revised:
2021-06-18
Online:
2021-12-25
Published:
2022-02-25
Contact:
ZHANG Xuehong
Supported by:
摘要:
油菜作为我国主要的农业经济作物及食用油的主要来源,及时、准确地获取其种植分布信息,是全面掌握油菜种植状况、加强生产管理、优化作物种植空间格局的重要依据。高分六号(GF-6)的宽视场(Wide Field View,WFV)传感器在可见光-近红外波段基础上增设了2个红边波段、1个黄波段和1个紫波段,为油菜遥感识别提供了更加丰富的光谱信息,进而相较于蓝、绿、红、近红外4个“传统波段”的识别精度有所提升。本文以油菜开花期内两景不同时相GF-6 WFV影像拼接图像作为数据源,选择油菜生产优势区的河南省固始县为研究区,针对油菜同其他地物的“异物同谱”现象以及不同生长阶段油菜的“同物异谱”现象,利用油菜开花期独特的反射光谱特征,结合均值间标准化近距离提出了NDSI28、S34、NDSI23和NDSI46共4个光谱指数,并由此构建油菜种植区域提取的决策树模型。研究结果表明,基于4个指数组合构建的决策树模型对油菜种植分布信息的提取达到了较好的效果,总体精度为96.17%,与随机森林、支持向量机、最大似然法相比分别高出0.31%、0.88%和1.24%;制图精度方面,决策树法为98.15%,比随机森林、支持向量机、最大似然法分别高4.72%、4.21%和5.59%;对于用户精度,决策树法为86.89%,较随机森林、最大似然法分别低2.2%和1.63%,比支持向量机高0.11%。由此说明,GF-6 WFV数据中的新增波段极大地丰富了其光谱信息,使其在包括油菜在内的农作物种植分布信息提取中具有独特的优势和巨大潜力。
姜楠, 张雪红, 汶建龙, 葛州徽. 基于高分六号宽幅影像的油菜种植分布区域提取方法[J]. 地球信息科学学报, 2021, 23(12): 2275-2291.DOI:10.12082/dqxxkx.2021.210233
JIANG Nan, ZHANG Xuehong, WEN Jianlong, GE Zhouhui. Extraction Method of Rapeseed Planting Distribution Area based on GF-6 WFV Image[J]. Journal of Geo-information Science, 2021, 23(12): 2275-2291.DOI:10.12082/dqxxkx.2021.210233
表4
NDS I 28与NDVI光谱指数可分性
地物类型 | | NDVI | |
---|---|---|---|
抽薹期油菜 | 冬小麦 | 1.19 | 1.32 |
常绿林地 | 0.34 | 0.18 | |
落叶林地 | 2.60 | 2.35 | |
裸地 | 5.19 | 5.35 | |
人工建筑 | 5.17 | 4.90 | |
水体 | 8.28 | 5.23 | |
冬小麦+道路 | 0.59 | 0.63 | |
盛花期油菜 | 冬小麦 | 1.22 | 3.24 |
常绿林地 | 0.31 | 1.04 | |
落叶林地 | 2.56 | 1.55 | |
裸地 | 5.11 | 4.53 | |
人工建筑 | 5.11 | 4.16 | |
水体 | 8.20 | 4.60 | |
冬小麦+道路 | 0.56 | 0.33 | |
绿熟期油菜 | 冬小麦 | 1.29 | 2.03 |
常绿林地 | 0.37 | 0.29 | |
落叶林地 | 2.75 | 2.03 | |
裸地 | 5.67 | 5.01 | |
人工建筑 | 5.50 | 4.59 | |
水体 | 8.84 | 4.96 | |
冬小麦+道路 | 0.62 | 0.26 |
[1] | 甄晓菊, 张雪红, 吴国明, 等. 基于Sentinel-2A NDVI时间序列数据的冬小麦识别[J]. 江苏农业科学, 2019, 47(16):239-245. |
[ Zhen X J, Zhang X H, Wu G M, et al. Identification of winter wheat based on sentinel-2A NDVI times series data[J]. Jiangsu Agricultural Sciences, 2019, 47(16):239-245. ] | |
[2] | 吴炳方. 中国农情遥感速报系统[J]. 遥感学报, 2004, 8(6):481-497. |
[ Wu B F. China crop watch system with remote sensing[J]. Journal of Remote Sensing, 2004, 8(6):481-497. ] | |
[3] |
Wu B F, Meng J H, Li Q Z, et al. Remote sensing-based global crop monitoring: Experiences with China's CropWatch system[J]. International Journal of Digital Earth, 2014, 7(2):113-137.
doi: 10.1080/17538947.2013.821185 |
[4] | 梁益同, 万君. 基于HJ-1A/B-CCD影像的湖北省冬小麦和油菜分布信息的提取方法[J]. 中国农业气象, 2012, 33(4):573-578. |
[ Liang Y T, Wan J. Application of HJ-1A/B-CCD images in extracting the distribution of winter wheat and rape in Hubei Province[J]. Chinese Journal of Agrometeorology, 2012, 33(4):573-578. ] | |
[5] | 王东, 方圣辉, 王政. 基于光谱特征和颜色特征的油菜提取研究[J]. 农业机械学报, 2018, 49(3):158-165. |
[ Wang D, Fang S H, Wang Z. Extraction for oilseed rape based on spectral feature and color feature[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3):158-165. ] | |
[6] | 杨泽宇, 张洪艳, 明金, 等. 深度学习在高分辨率遥感影像冬油菜提取中的应用[J]. 测绘通报, 2020(9):110-113. |
[ Yang Z Y, Zhang H Y, Ming J, et al. Extraction of winter rapeseed from high-resolution remote sensing imagery via deep learning[J]. Bulletin of Surveying and Mapping, 2020(9):110-113. ] | |
[7] | 魏传文, 黄敬峰, 杨玲波. 基于多时相环境卫星的冬前油菜种植面积估算[J]. 中国农业信息, 2019, 31(5):38-48. |
[ Wei C W, Huang J F, YANG L B. Estimation of rapeseed planting area before winter based on multi-temporal[J]. China Agricultural Informatics, 2019, 31(5):38-48. ] | |
[8] | 钟仕全, 陈燕丽, 莫建飞, 等. 基于中巴02B星遥感数据的油菜识别技术研究[J]. 国土资源遥感, 2010, 22(2):77-79,85. |
[ Zhong S Q, Chen Y L, Mo J F, et al. Cole feature extraction from CBERS-02B remote sensing images[J]. Remote Sensing for Land & Resources, 2010, 22(2):77-79,85. ] | |
[9] | 王立辉, 黄进良, 孙俊英. 基于线性光谱混合模型的油菜种植面积遥感监测方法研究[J]. 遥感信息, 2010, 25(3):55-59. |
[ Wang L H, Huang J L, Sun J Y. Study on remote sensing monitoring of rape acreage based on linear spectral mixture model[J]. Remote Sensing Information, 2010, 25(3):55-59. ] | |
[10] | Li D D, Liu J, Zhou Q B, et al. Study on information extraction of rape acreage based on TM remote sensing image[C]. International Geoscience and Remote Sensing Symposium (IGARSS), 2011:3323-3326. |
[11] | 肖善才. 基于生长气候分区的土地利用农作物种植面积快速提取研究——以南京市油菜种植面积提取为例[J]. 上海国土资源, 2018, 39(1):50-56. |
[ Xiao S C. Rapid extraction research on cultivable areas based on growth climate zone: The example of rapid planted-area extraction in Nanjing[J]. Shanghai Land&Resources, 2018, 39(1):50-56. ] | |
[12] | 张煦, 马驿, 郑雯, 等. 基于时序MODIS-NDVI的油菜种植面积变化趋势分析——以江汉平原为例[J]. 长江流域资源与环境, 2016, 25(3):412-419. |
[ Zhang X, Ma Y, Zheng W, et al. Variation trend of rape cultivation area based on modis-ndvi time series data: A case in Jianghan plain[J]. Resources and Environment in the Yangtze Basin, 2016, 25(3):412-419. ] | |
[13] | 王松林, 张佳华, 刘学锋. 基于MODIS多时相的江苏启东市油菜种植面积提取[J]. 遥感技术与应用, 2015, 30(5):946-951. |
[ Wang S L, Zhang J H, Liu X F. Extraction of rape planting areas based on multi-temporal MODIS data in Qidong, Jiangsu Province[J]. Remote Sensing Technology and Application, 2015, 30(5):946-951. ] | |
[14] | 柴振刚, 胡佩敏, 熊勤学. 基于面向对象的光学和Sentinel—1 SAR数据油菜种植空间分布信息提取方法研究[J]. 气象科技进展, 2018, 8(5):58-62. |
[ Chai Z G, Hu P M, Xiong Q X. The extraction method of rape oil planting distribution using per-field classification based optical and sentinel-1 SAR images data[J]. Advances in Meteorological Science and Technology, 2018, 8(5):58-62. ] | |
[15] | 韩涛, 潘剑君, 张培育, 等. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5):890-899. |
[ Han T, Pan J J, Zhang P Y, et al. Study on differences between sentinel-2A and landsat-8 images in rape identification[J]. Remote Sensing Technology and Application, 2018, 33(5):890-899. ] | |
[16] |
李中元, 吴炳方, 张淼, 等. 利用物候差异与面向对象决策树提取油菜种植面积[J]. 地球信息科学学报, 2019, 21(5):720-730.
doi: 10.12082/dqxxkx.2019.180345 |
[ Li Z Y, Wu B F, Zhang M A, et al. Identifying rapeseed planting area using an object-oriented method and crop phenology[J]. Journal of Geo-information Science, 2019, 21(5):720-730. ] | |
[17] |
Tao J B, Wu W B, Liu W B, et al. Exploring the spatio-temporal dynamics of winter rape on the middle reaches of Yangtze River Valley using time-series MODIS data[J]. Sustainability, 2020, 12(2):466.
doi: 10.3390/su12020466 |
[18] | 尤慧, 苏荣瑞, 肖玮钰, 等. 基于MODIS EVI时序数据的江汉平原油菜种植分布信息提取[J]. 国土资源遥感, 2018, 30(1):173-179. |
[ You H, Su R R, Xiao W Y, et al. Extraction of rape planting distribution information in Jianghan Plain based on MODIS EVI time series data[J]. Remote Sensing for Land & Resources, 2018, 30(1):173-179. ] | |
[19] | 佘宝, 黄敬峰, 石晶晶, 等. 基于红边位置变化特征的油菜种植区域提取[J]. 农业工程学报, 2013, 29(15):145-152. |
[ She B, Huang J F, Shi J J, et al. Extracting oilseed rape growing regions based on variation characteristics of red edge position[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15):145-152. ] | |
[20] |
Fieuzal R, Baup F, Maraissicre C. Monitoring wheat and rapeseed by using synchronous optical and radar satellite data-from temporal signatures to crop parameters estimation[J]. Advances in Remote Sensing, 2013, 2(2):162-180.
doi: 10.4236/ars.2013.22020 |
[21] |
王林江, 吴炳方, 张淼, 等. 关键生育期冬小麦和油菜遥感分类方法[J]. 地球信息科学学报, 2019, 21(7):1121-1131.
doi: 10.12082/dqxxkx.2019.180421 |
[ Wang L J, Wu B F, Zhang M, et al. Winter wheat and rapeseed classification during key growth period by integrating multi-source remote sensing data[J]. Journal of Geo-information Science, 2019, 21(7):1121-1131. ] | |
[22] | 姬忠林, 张月平, 李乔玄, 等. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4):760-765. |
[ Ji Z L, Zhang Y P, Li Q X, et al. PlantingInformation extraction of winter wheat and rape based on GF-1 images[J]. Remote Sensing Technology and Application, 2017, 32(4):760-765. ] | |
[23] | Shan J, Wang Z M, Yu K, et al. Study on extraction methods of rape area based on GF-1 satellite image[C]. 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), Hangzhou, 2018:1-5. |
[24] | 蒋怡, 董秀春, 王昕, 等. 基于高分六号影像的四川盆地油菜种植调查[J]. 四川农业科技, 2020(1):68-70. |
[ Jiang Y, Dong X C, Wang X, et al. A survey on rape cultivation in Sichuan Basin based on the image of GF-6[J]. Sichuan Agricultural Science and Technology, 2020(1):68-70. ] | |
蒋怡, 董秀春, 王昕, 等. 基于高分六号影像的四川盆地油菜种植调查[J]. 四川农业科技, 2020(1):68-70. | |
[ Jiang Y, Dong X C, Wang X, et al. A survey on rape cultivation in Sichuan Basin based on the image of GF-6[J]. Science and Technology of Sichuan Agriculture, 2020(1):68-70. ] | |
[25] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 |
[26] | Francisco J, Marcos O, Carlos M, et al. On-line estimation of the aerobic phase length for partial nitrification processes in SBR based on features extraction and SVM classification[J]. Chemical Engineering Journal, 2018(331):114-123. |
[27] |
何昭欣, 张淼, 吴炳方, 等. Google Earth Engine支持下的江苏省夏收作物遥感提取[J]. 地球信息科学学报, 2019, 21(5):752-766.
doi: 10.12082/dqxxkx.2019.180420 |
[ He Z X, Zhang M A, Wu B F, et al. Extraction of summer crop in Jiangsu based on google earth engine[J]. Journal of Geo-information Science, 2019, 21(5):752-766. ] | |
[28] |
Pelletier C, Valero S, Inglada J, et al. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas[J]. Remote Sensing of Environment, 2016, 187:156-168.
doi: 10.1016/j.rse.2016.10.010 |
[29] | 骆剑承, 王钦敏, 马江洪, 等. 遥感图像最大似然分类方法的EM改进算法[J]. 测绘学报, 2002, 31(3):234-239. |
[ Luo J C, Wang Q M, Ma J H, et al. The EM-based maximum likelihood classifier for remotely sensed data[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(3):234-239. ] | |
[30] |
Van der Linden S, Rabe A, Held M, et al. The EnMAP-Box: A toolbox and application programming interface for EnMAP data processing[J]. Remote Sensing. 2015; 7(9):11249-11266.
doi: 10.3390/rs70911249 |
[31] | Skakun S, Kuaaul N, Shelestov A Y, et al. Efficiency assessment of multi-temporal C-Bang Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 9(8):1-8. |
[32] | Breiman L, Friedman J H, Olshen R, et al. Classification and regression trees[J]. Encyclopedia of Ecology, 1984, 40(3):582-588. |
[33] | 刘晋阳, 辛存林, 武红敢, 等. GF-6卫星WFV数据在林地类型监测中的应用潜力[J]. 航天返回与遥感, 2019, 40(2):107-116. |
[ Liu J Y, Xin C L, Wu H G, et al. Potential application of GF-6 WFV data in forest types monitoring[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(2):107-116. ] | |
[34] | 曾庆伟, 武红敢. GF-6WFV黄边波段在森林扰动监测中的应用潜力研究[J]. 北京测绘, 2020, 34(2):208-213. |
[ Zeng Q W, Wu H G. Analysis of forest disturbance monitoring potential of GF-6 WFV yellow edge band data[J]. Beijing Surveying and Mapping, 2020, 34(2):208-213. ] | |
[35] | 陆春玲, 白照广, 李永昌, 等. 高分六号卫星技术特点与新模式应用[J]. 航天器工程, 2021, 30(1):7-14. |
[ Lu C L, Bai Z G, Li Y C, et al. Technical characteristic and new mode Applications of GF-6 satellite[J]. Spacecraft Engineering, 2021, 30(1):7-14. ] |
[1] | 曹引, 冶运涛, 赵红莉, 蒋云钟, 董甲平, 严登明. 高分六号影像在内陆水体叶绿素a反演中的应用潜力分析[J]. 地球信息科学学报, 2022, 24(3): 546-557. |
[2] | 邱炳文, 闫超, 黄稳清. 基于时序遥感数据的农作物种植制度研究进展与展望[J]. 地球信息科学学报, 2022, 24(1): 176-188. |
[3] | 朱婉雪, 孙志刚, 李彬彬, 杨婷, 刘振, 彭金榜, 朱康莹, 李仕冀, 娄金勇, 侯瑞星, 李静, 于武江, 王永利, 张峰, 刘向冶, 胡华浪, 欧阳竹. 基于无人机遥感的滨海盐碱地土壤空间异质性分析与作物光谱指数响应胁迫诊断[J]. 地球信息科学学报, 2021, 23(3): 536-549. |
[4] | 王林江, 吴炳方, 张淼, 邢强. 关键生育期冬小麦和油菜遥感分类方法[J]. 地球信息科学学报, 2019, 21(7): 1121-1131. |
[5] | 邓超, 陈志彪, 陈海滨, 陈志强. 南方红壤侵蚀区长汀县不同生态恢复年限下芒萁叶绿素含量的高光谱估算模型[J]. 地球信息科学学报, 2019, 21(6): 948-957. |
[6] | 李中元, 吴炳方, 张淼, 邢强, 李名勇, 闫娜娜. 利用物候差异与面向对象决策树提取油菜种植面积[J]. 地球信息科学学报, 2019, 21(5): 720-730. |
[7] | 张沁雨,李哲,夏朝宗,陈健,彭道黎. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10): 1619-1628. |
[8] | 金续, 张显峰, 罗伦, 潘一凡, 阳柯. 公路路面光谱特征分析与沥青路面老化遥感监测方法初探[J]. 地球信息科学学报, 2017, 19(5): 672-681. |
[9] | 苗翠翠, 江南, 彭世揆, 吕恒, 李扬, 张瑜, 王妮, 李军. 基于NDVI时序数据的水稻种植面积遥感监测分析——以江苏省为例[J]. 地球信息科学学报, 2011, 13(2): 273-280. |
[10] | 伍瑞卿, 杨存建. 云南省腾冲油菜反射波谱特征与应用分析[J]. 地球信息科学学报, 2006, 8(4): 136-140. |
|