地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (2): 310-325.doi: 10.12082/dqxxkx.2022.210034

• 地球信息技术在国土空间规划中的应用 • 上一篇    下一篇

多时相耕地覆盖提取和变化分析:一种结合遥感和空间统计的时空上下文方法

习文强(), 杜世宏*(), 杜守基   

  1. 北京大学遥感与地理信息系统所,北京 100871
  • 收稿日期:2021-01-20 修回日期:2021-03-10 出版日期:2022-02-25 发布日期:2022-04-25
  • 通讯作者: *杜世宏(1975— ),男,甘肃靖远人,博士,研究员,主要从事空间信息智能处理与理解以及时空应用研究。 E-mail: dshgis@hotmail.com
  • 作者简介:习文强(1993— ),男,湖北通城人,博士生,主要从事多时相和时间序列遥感影像分析研究。E-mail: xiwenqiang@pku.edu.cn
  • 基金资助:
    国家自然科学基金项目(41871372)

Multi-temporal Cultivated Land Cover Extraction and Change Analysis: A Spatiotemporal Context Method Combining Remote Sensing and Spatial Statistics

XI Wenqiang(), DU Shihong*(), DU Shouji   

  1. Institute of Remote Sensing and GIS, Peking University, Beijing 100871, China
  • Received:2021-01-20 Revised:2021-03-10 Online:2022-02-25 Published:2022-04-25
  • Contact: DU Shihong
  • Supported by:
    National Natural Science Foundation of China(41871372)

摘要:

基于多时相影像的耕地提取和变化分析是有效管理和保护耕地资源的重要手段。然而就多时相耕地的分类提取而言,现有方法对于多时相影像中地物的时空特征表达和时空上下文关系建模存在着局限性,导致耕地的提取精度不佳;其次,对于耕地的变化分析,现有方法往往只关注基于行政单元的耕地面积统计变化,而对耕地变化在空间上的相关性分布特点考虑较少。因此,本文首先提出了一种时空上下文分类方法,综合表达和利用多时相影像中地物的光谱、纹理和空间等特征,建模时空维度上地物间在特征和语义上的上下文关系,来提高耕地覆盖分类的精度;其次,基于耕地覆盖的提取结果,在规则格网和行政区划单元上,采用GIS空间统计方法分析耕地变化的空间相关性特点;最后,以北京市顺义区为例,以2015—2019年的多时相Sentinel-2影像为数据源对本文方法进行验证。结果表明,与常见的2种多时相影像分类方法相比,本文方法在多时相耕地分类上精度最高,平均用户精度和制图精度分别达到91.21%和90.53%,所有类别的总体精度为90.79%。这表明本文方法能精确提取多时相耕地覆盖信息。通过对耕地变化的空间分布特点进行分析,发现2015—2019年顺义区耕地变化存在区域聚集现象,主要呈现为集中减少特点,其中赵全营镇、高丽营镇、木林镇和杨镇地区耕地的聚集性减少较为明显,说明这些地区的耕地侵占和减少问题比较严重。

关键词: 耕地, 多时相数据, 时空特征, 时空上下文, 条件随机场, 影像分类, 空间统计, 变化分析

Abstract:

The extraction and change analysis of cultivated land covers based on multi-temporal images are important means to effectively manage and protect cultivated land resources. However, as far as the classification and extraction of multi-temporal cultivated land covers are concerned, the existing methods have limitations in the comprehensive expression of spatiotemporal features and the accurate modeling of spatiotemporal context relations among geographic objects, leading to the poor extraction accuracy of cultivated land covers. In addition, for the analysis of cultivated land change, the existing methods usually only focus on the statistical areal change of cultivated land cover based on administrative units, while consideration is seldom taken into the spatial correlation distribution characteristics of changes in cultivated land covers. Accordingly, first of all, this paper proposes a multi-temporal spatiotemporal context classification method, which comprehensively expresses and utilizes the multi-temporal spectral, texture, and spatial features of geographic objects, and models the contextual relations of features and semantics among geographic objects in both spatial and temporal dimensions of multi-temporal images, so as to improve the classification accuracy of cultivated land covers. Then, based on the extracted results of cultivated land covers, spatial statistical method of Geographic Information System (GIS) is used to analyze the spatial correlation characteristics of cultivated land changes in regular grids and administrative division units. Finally, Shunyi District of Beijing is taken as the study area while multi-temporal Sentinel-2 images in 2015-2019 are used as the data sources to conduct verification of the proposed method. The results show that, compared with the two existing common multi-temporal classification methods, the proposed method achieves the highest accuracies in the classification of multi-temporal cultivated lands. The average user's accuracy and producer's accuracy reach 91.21% and 90.53%, respectively, while the overall accuracy of all categories is 90.79%, indicating that the proposed method can accurately extract the multi-temporal cultivated land cover information. Furthermore, according to the analysis of the spatial distribution characteristics of cultivated land changes, this study found a phenomenon of regional aggregation of the cultivated land change in Shunyi District from 2015 to 2019, which mainly presents the characteristics of concentrated reduction. The aggregation reduction phenomena of cultivated land covers in Zhaoquanying Town, Gaoliying Town, Mulin Town, and Yang Town are especially obvious, indicating that the problems of cultivated land encroachment and reduction are quite serious in these areas.

Key words: cultivated land, multi-temporal data, spatiotemporal features, spatiotemporal context, conditional random field, image classification, spatial statistics, change analysis