地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (2): 405-419.doi: 10.12082/dqxxkx.2022.210281
• 遥感科学与应用技术 • 上一篇
高书鹏1(), 刘晓龙2,*(
), 宋金玲3, 史正涛1, 杨磊3, 郭利彪2
收稿日期:
2021-05-20
修回日期:
2021-06-29
出版日期:
2022-02-25
发布日期:
2022-04-25
通讯作者:
*刘晓龙(1986— ),男,内蒙古赤峰人,博士,副教授,主要从事高分植被遥感研究。E-mail: liuxl@mail.bnu.edu.cn作者简介:
高书鹏(1991— ),男,云南文山人,博士生,主要从事热带山地遥感时空融合与植被分类研究。E-mail: gaoshuaa@nwafu.edu.cn
基金资助:
GAO Shupeng1(), LIU Xiaolong2,*(
), SONG Jinling3, SHI Zhengtao1, YANG Lei3, GUO Libiao2
Received:
2021-05-20
Revised:
2021-06-29
Online:
2022-02-25
Published:
2022-04-25
Contact:
LIU Xiaolong
Supported by:
摘要:
高时空分辨率NDVI时序数据作为遥感应用中的重要数据源,对土地覆被动态变化监测具有重要意义,特别是在地表高程变化显著、气候条件复杂、景观异质性强烈的热带山区。虽然当前学者们提出了诸多时空数据融合模型,但针对这些模型在热带山区的NDVI数据融合精度及其影响因素分析尚不多见。对此,本文选取3类时空数据融合方法(权重函数法、概率统计法和多种混合法)中具有代表性的4个模型:STARFM(Spatial and Temporal Adaptive Reflectance Fusion Model)、RASTFM(Spatial and Temporal Adaptive Reflectance Fusion Model)、ESTARFM(Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model)、BSFM(Bayesian Spatiotemporal Fusion Model) (STARFM、ESTARFM为权重函数法;BSFM为概率统计法;RASTFM为多种混合法),选择位于我国热带山区的纳板河流域作为研究区。对融合模型的数据源选择、研究区的地形及景观空间异质性、融合模型、以及薄云和雾霾等大气条件等影响因素进行分析,研究结果表明:① 数据融合精度随输入影像之间的时间间隔及其相对变化量增加而降低;融合中输入的高、低空间分辨率数据光谱匹配度越高,融合精度越高(OLI优于Sentinel-2; MODIS优于VIIRS);经过BRDF校正的数据能够有效提高各模型的融合精度;② 地形及空间异质性对融合结果精度影响显著,融合精度与空间异质性呈负相关,本研究中融合精度随着坡度的增大而减小,但坡向对融合精度的影响较小;地形对RASTFM的影响较其他模型低;③ 融合模型中输入的高质量影像越多,模型的融合精度往往越高;④ 薄云和雾霾会对融合精度产生显著负面影响。本研究的结果对于改进热带山地地区的高时空数据融合模型,生产热带山区复杂地理环境的高精度高时空分辨率NDVI数据集具有重要的参考价值。
高书鹏, 刘晓龙, 宋金玲, 史正涛, 杨磊, 郭利彪. 热带山区高时空分辨率NDVI融合精度及其影响因素分析[J]. 地球信息科学学报, 2022, 24(2): 405-419.DOI:10.12082/dqxxkx.2022.210281
GAO Shupeng, LIU Xiaolong, SONG Jinling, SHI Zhengtao, YANG Lei, GUO Libiao. Study on the Factors that Influencing High Spatio-temporal Resolution NDVI Fusion Accuracy in Tropical Mountainous Area[J]. Journal of Geo-information Science, 2022, 24(2): 405-419.DOI:10.12082/dqxxkx.2022.210281
表1
研究选用的数据
数据 | 空间 分辨率/m | 时间 分辨率/d | 波长范围/μm | DOY(年份) | 数据共享机构 |
---|---|---|---|---|---|
Landsat OLI | 30 | 16 | Red:0.630~0.680 NIR:0.845~0.885 | 318(2016) 016(2017) 064(2017) 096(2017) 025(2020) 073(2020) | 美国地质调查局(United States Geological Survey, USGS) ( |
Sentinel-2 | 10 | 10 | Red:0.650~0.680 NIR:0.785~0.900 | 326(2016) 020(2017) 040(2017) 070(2017) | 欧洲航天局(European Space Agency, ESA, ) ( |
MODIS | 500 | 1 | Red:0.620~0.670 NIR:0.841~0.876 | 001(2013)~001(2018) | 使用MOD09GA、MCD43A4、MOD09A1产品。( |
VIIRS | 500 | 1 | Red:0.600~0.680 NIR:0.846~0.885 | 001(2013)~001(2018) | 使用VNP09GA、VNP43IA4、VNP09A1产品。( |
DEM | 30 | ( |
表2
OLI融合NDVI与观测NDVI的比较
模型 | 间隔天数/RCV | OLI融合MOD09GA | OLI融合VNP09GA | OLI融合MCD43A4 | OLI融合VNP43IA4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||||
STARFM | 48/0.0155 | 0.80 | 0.08 | 0.78 | 0.08 | 0.82 | 0.07 | 0.80 | 0.07 | ||
64/0.0184 | 0.72 | 0.09 | 0.72 | 0.08 | 0.79 | 0.07 | 0.77 | 0.07 | |||
RASTFM | 48/0.0155 | 0.81 | 0.07 | 0.80 | 0.07 | 0.84 | 0.06 | 0.82 | 0.07 | ||
64/0.0184 | 0.76 | 0.07 | 0.75 | 0.07 | 0.80 | 0.07 | 0.79 | 0.08 | |||
ESTARFM | 56/0.0170 | 0.88 | 0.06 | 0.85 | 0.06 | 0.90 | 0.06 | 0.89 | 0.06 | ||
72/0.0214 | 0.84 | 0.07 | 0.82 | 0.07 | 0.87 | 0.07 | 0.85 | 0.06 | |||
BSFM | - | 0.95 | 0.04 | 0.93 | 0.05 | - | - | - | - |
表3
Sentinel-2融合NDVI与观测NDVI的比较
模型 | 间隔天数 /RCV | Sentinel-2融合MOD09GA | Sentinel-2融合VNP09GA | Sentinel-2融合MCD43A4 | Sentinel-2融合 VNP43IA4 | ||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
STARFM | 20/0.0082 | 0.89 | 0.09 | 0.87 | 0.09 | 0.90 | 0.09 | 0.89 | 0.09 |
60/0.0145 | 0.81 | 0.09 | 0.81 | 0.09 | 0.88 | 0.09 | 0.87 | 0.09 | |
RASTFM | 20/0.0082 | 0.89 | 0.09 | 0.88 | 0.09 | 0.91 | 0.08 | 0.90 | 0.08 |
60/0.0145 | 0.83 | 0.09 | 0.81 | 0.09 | 0.88 | 0.08 | 0.87 | 0.09 | |
ESTARFM | 40/0.0114 | 0.90 | 0.06 | 0.89 | 0.07 | 0.93 | 0.06 | 0.93 | 0.06 |
55/0.0185 | 0.86 | 0.09 | 0.85 | 0.09 | 0.89 | 0.08 | 0.88 | 0.09 | |
BSFM | - | 0.94 | 0.07 | 0.92 | 0.07 | - | - | - | - |
[1] |
Gu J, Li X, Huang C L, et al. A simplified data assimilation method for reconstructing time-series MODIS NDVI data[J]. Advances in Space Research, 2009, 44(4):501-509. DOI: 10.1016/j.asr.2009.05.009
doi: 10.1016/j.asr.2009.05.009 |
[2] |
Chen X H, Yang D D, Chen J, et al. An improved automated land cover updating approach by integrating with downscaled NDVI time series data[J]. Remote Sensing Letters, 2015, 6(1):29-38. DOI: 10.1080/2150704X.2014.998793
doi: 10.1080/2150704X.2014.998793 |
[3] |
Wu T S, Fu H P, Feng F, et al. A new approach to predict normalized difference vegetation index using time-delay neural network in the arid and semi-arid grassland[J]. International Journal of Remote Sensing, 2019, 40(23):9050-9063. DOI: 10.1080/01431161.2019.1624870
doi: 10.1080/01431161.2019.1624870 |
[4] |
Ghamisi P, Rasti B, Yokoya N, et al. Multisource and multitemporal data fusion in remote sensing A comprehensive review of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1):6-39. DOI: 10.1109/MGRS.2018.2890023
doi: 10.1109/MGRS.2018.2890023 |
[5] | 张立福, 彭明媛, 孙雪剑, 等. 遥感数据融合研究进展与文献定量分析(1992—2018)[J]. 遥感学报, 2019, 23(4):603-619. |
[ Zhang L F, Peng M Y, Sun X J, et al. Progress and bibliometric analysis of remote sensing data fusion methods (1992—2018)[J]. Journal of Remote Sensing, 2019, 23(4):603-619. ] DOI: 10.11834/jrs.20199073
doi: 10.11834/jrs.20199073 |
|
[6] | 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166. |
[ Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing image fusion[J]. Journal of Remote Sensing, 2021, 25(1):148-166. ] DOI: 10.11834/jrs.20210259
doi: 10.11834/jrs.20210259 |
|
[7] |
Zhu X, Cai F, Tian J, et al. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions[J]. Remote Sensing, 2018, 10(4):527. DOI: 10.3390/rs10040527
doi: 10.3390/rs10040527 |
[8] |
Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218. DOI: 10.1109/TGRS.2006.872081
doi: 10.1109/TGRS.2006.872081 |
[9] |
Zhu X L, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623. DOI: 10.1016/j.rse.2010.05.032
doi: 10.1016/j.rse.2010.05.032 |
[10] |
Yokoya N, Yairi T, Iwasaki A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):528-537. DOI: 10.1109/TGRS.2011.2161320
doi: 10.1109/TGRS.2011.2161320 |
[11] |
Zhang W, Li A N, Jin H A, et al. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-Like data[J]. Remote Sensing, 2013, 5(10):5346-5368. DOI: 10.1109/TGRS.2011.2161320
doi: 10.1109/TGRS.2011.2161320 |
[12] |
Liao L, Song J, Wang J, et al. Bayesian method for building frequent Landsat-like NDVI datasets by integrating MODIS and Landsat NDVI[J]. Remote Sensing, 2016, 8(6):452. DOI: 10.3390/rs8060452
doi: 10.3390/rs8060452 |
[13] |
Song H, Liu Q, Wang G, et al. Spatiotemporal satellite image fusion uing deep convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3SI):821-829. DOI: 10.1109/JSTARS.2018.2797894
doi: 10.1109/JSTARS.2018.2797894 |
[14] |
Tan Z, Yue P, Di L, et al. Deriving high spatiotemporal remote sensing images using deep convolutional network[J]. Remote Sensing, 2018, 10(7):1066. DOI: 10.3390/rs10071066
doi: 10.3390/rs10071066 |
[15] | 黄波. 时空遥感影像融合研究的进展与趋势[J]. 四川师范大学学报(自然科学版), 2020, 43(4):427-434,424. |
[ Huang B. Research Progress and Trend of Spatial and Temporal Remote Sensing Image Fusion[J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(4):427-434,424. ] DOI: 10.3969/j.issn.1001-8395.2020.04.001
doi: 10.3969/j.issn.1001-8395.2020.04.001 |
|
[16] |
Zhu X L, Helmer E H, Gao F, et al. A flexible spatiotemporal method for fusing satellite images with different resolutions[J]. Remote Sensing of Environment, 2016, 172:165-177. DOI: 10.1016/j.rse.2015.11.016
doi: 10.1016/j.rse.2015.11.016 |
[17] |
Zhao Y Q, Huang B, Song H H. A robust adaptive spatial and temporal image fusion model for complex land surface changes[J]. Remote Sensing of Environment, 2018, 208:42-62. DOI: 10.1016/j.rse.2018.02.009
doi: 10.1016/j.rse.2018.02.009 |
[18] | 刘建波, 马勇, 武易天, 等. 遥感高时空融合方法的研究进展及应用现状[J]. 遥感学报, 2016, 20(5):1038-1049. |
[ Liu J B, Ma Y, Wu Y T, et al. Review of methods and applications of high spatiotemporal fusion of remote sensing data[J]. Journal of Remote Sensing, 2016, 20(5):1038-1049. ] DOI: 10.11834/jrs.20166218
doi: 10.11834/jrs.20166218 |
|
[19] |
Jarihani A A, Mcvicar T R, Van Niel T G, et al. Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of "Index-then-Blend" and "Blend-then-Index" Approaches[J]. Remote Sensing, 2014, 6(10):9213-9238. DOI: 10.3390/rs6109213
doi: 10.3390/rs6109213 |
[20] |
Chen X H, Liu M, Zhu X L, et al. "Blend-then-Index" or "Index-then-Blend": A Theoretical Analysis for Generating High-resolution NDVI Time Series by STARFM[J]. Photogrammetric Engineering and Remote Sensing, 2018, 84(2):66-74. DOI: 10.14358/PERS.84.2.65
doi: 10.14358/PERS.84.2.65 |
[21] |
Liu M L, Ke Y H, Yin Q, et al. Comparison of five spatio-temporal satellite image fusion models over Landscapes with vrious spatial heterogeneity and temporal variation[J]. Remote Sensing, 2019, 11(22):2612. DOI: 10.3390/rs11222612
doi: 10.3390/rs11222612 |
[22] |
Zhou J, Chen J, Chen X, et al. Sensitivity of six typical spatiotemporal fusion methods to different influential factors: A comparative study for a normalized difference vegetation index time series reconstruction[J]. Remote Sensing of Environment, 2021, 252:112130. DOI: 10.1016/j.rse.2020.112130
doi: 10.1016/j.rse.2020.112130 |
[23] |
Wang Q, Atkinson P M. Spatio-temporal fusion for daily Sentinel-2 images[J]. Remote Sensing of Environment, 2018, 204:31-42. DOI: 10.1016/j.rse.2017.10.046
doi: 10.1016/j.rse.2017.10.046 |
[24] |
平博, 孟云闪, 苏奋振. 面向GF-1 WFV数据和MODIS数据的时空融合算法对比分析[J]. 地球信息科学学报, 2019, 21(2):157-167.
doi: 10.12082/dqxxkx.2019.180314 |
[ Ping B, Meng Y S, Su F Z. Comparisons of spatio-temporal fusion methods for GF-1 WFV and MODIS data[J]. Journal of Geo-Information Science, 2019, 21(2):157-167. ] DOI: 10.12082/dqxxkx.2019.180314
doi: 10.12082/dqxxkx.2019.180314 |
|
[25] | 纳板河流域国家级自然保护区管理局. 保护区概况[EB/OL]. https://nbhbhq.xsbn.gov.cn.html,2016-09-26. |
[National Nature Reserve Administration of Naban River Watershed.2016. Overview of the nature reserve[EB/OL]. https://nbhbhq.xsbn.gov.cn.html,2016-09-26. ] | |
[26] |
Yang X Q, Blagodatsky S, Lippe M, et al. Land-use change impact on time-averaged carbon balances: Rubber expansion and reforestation in a biosphere reserve, South-West China[J]. Forest Ecology and Management, 2016, 372:149-163. DOI: 10.1016/j.foreco.2016.04.009
doi: 10.1016/j.foreco.2016.04.009 |
[27] | 宫世贤, 凌升海. 西双版纳雾在减少[J]. 气象, 1996(11):11-15. |
[ Gong S X, Ling S H. Fog Decreasing in Xishuangbanna Region[J]. Meteorological Monthly, 1996(11):11-15. ] | |
[28] |
Gao S P, Liu X L, Bo Y C, et al. Rubber identification based on blended high spatio-temporal resolution optical remote sensing data: A case study in Xishuangbanna[J]. Remote Sensing, 2019, 11(5):496. DOI: 10.3390/rs11050496
doi: 10.3390/rs11050496 |
[29] |
Jia Y F, Huang Y, Yu B L, et al. Downscaling land surface temperature data by fusing Suomi NPP-VIIRS and landsat-8 TIR data[J]. Remote Sensing Letters, 2017, 8(12):1132-1141.DOI: 10.1080/2150704X.2017.1362125
doi: 10.1080/2150704X.2017.1362125 |
[30] |
Quan J, Zhan W, Ma T, et al. An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes[J]. Remote Sensing of Environment, 2018, 206:403-423. DOI: 10.1016/j.rse.2017.12.003
doi: 10.1016/j.rse.2017.12.003 |
[31] |
Thonfeld F, Feilhauer H, Braun M, et al. Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 50:131-140. DOI: 10.1016/j.jag.2016.03.009
doi: 10.1016/j.jag.2016.03.009 |
[32] | 张雪红. 基于高分辨率遥感的桉树林空间异质性与尺度效应研究[D]. 南京:南京大学, 2012. |
[ Zhang, X H. Study on spatial heterogeneity and scale effect of eucalyptus forest based on high resolution remote sensing[D]. Nanjing: Nanjing University, 2012. ] | |
[33] |
Bei X Y, Yao Y J, Zhang L L, et al. Estimation of daily terrestrial latent heat flux with high spatial resolution from MODIS and Chinese GF-1 Data[J]. Sensors, 2020, 20(10):2811. DOI: 10.3390/s20102811
doi: 10.3390/s20102811 |
[34] |
Huang C, Chen Y, Zhang S Q, et al. Surface water mapping from Suomi NPP-VIIRS imagery at 30 m resolution via blending with landsat data[J]. Remote Sensing, 2016, 8(8):631. DOI: 10.3390/rs8080631
doi: 10.3390/rs8080631 |
[35] |
Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2):127-150.
doi: 10.1016/0034-4257(79)90013-0 |
[36] |
Singh S, Sood V, Taloor A K, et al. Qualitative and quantitative analysis of topographically derived CVA algorithms using MODIS and Landsat-8 data over Western Himalayas, India[J]. Quaternary International, 2021, 575:85-95. DOI: 10.1016/j.quaint.2020.04.048
doi: 10.1016/j.quaint.2020.04.048 |
[37] |
Liu B Y, Chen J, Chen J G, et al. Land Cover Change Detection Using Multiple Shape Parameters of Spectral and NDVI Curves[J]. Remote Sensing, 2018, 10(8):1251.
doi: 10.3390/rs10081251 |
[38] |
Wei Q, Bioucas-Dias J, Dobigeon N, et al. Hyperspectral and multispectral image fusion based on a sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3658-3668. DOI: 10.1109/TGRS.2014.2381272
doi: 10.1109/TGRS.2014.2381272 |
[39] |
Liu X L, Bo Y C, Zhang J, et al. Classification of C3 and C4 vegetation types using MODIS and ETM plus blended high spatio-temporal resolution data[J]. Remote Sensing, 2015, 7(11):15244-15268. DOI: 10.3390/rs71115244
doi: 10.3390/rs71115244 |
[40] |
Liu M, Yang W, Zhu X L, et al. An Improved Flexible Spatiotemporal Data Fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series[J]. Remote Sensing of Environment, 2019, 227:74-89. DOI: 10.1016/j.rse.2019.03.012
doi: 10.1016/j.rse.2019.03.012 |
[41] |
Deng Y X, Chen X F, Chuvieco E, et al. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape[J]. Remote Sensing of Environment, 2007, 111(1):122-134. DOI: 10.1016/j.rse.2007.03.016
doi: 10.1016/j.rse.2007.03.016 |
[1] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[2] | 谢静, 陈楠, 林偲蔚. 基于地形音乐的地形定量分析与空间分异研究—以陕北黄土高原为例[J]. 地球信息科学学报, 2023, 25(5): 924-934. |
[3] | 杨雨, 宋福铁, 张杰. 金融网络中心性对中国城市经济增长的影响机理[J]. 地球信息科学学报, 2023, 25(5): 982-998. |
[4] | 刘垚明, 李宛静, 张修远, 张宇恒, 李然, 周琪. 基于多源开放数据的中国农村可达指数评估[J]. 地球信息科学学报, 2023, 25(4): 783-793. |
[5] | 高顺祥, 陈珍, 张志健, 陈越, 肖中圣, 邓进, 许奇. 骑行替代步行后公共交通可达性改善效果评估方法[J]. 地球信息科学学报, 2023, 25(3): 439-449. |
[6] | 吴子豪, 刘耀林, 冯向阳, 陈奕云, 闫庆武. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573-587. |
[7] | 徐繁树, 王保云, 韩俊. 一种沟谷型潜在泥石流危险性评价方法:基于多源数据融合的卷积神经网络[J]. 地球信息科学学报, 2023, 25(3): 588-605. |
[8] | 巫磊, 吴文挺. GEE平台下结合滤波算法和植被物候特征的互花米草遥感提取最优时间窗口确定[J]. 地球信息科学学报, 2023, 25(3): 606-624. |
[9] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[10] | 刘乐, 盛科荣, 王传阳. 中国科技型初创企业的时空格局及影响因素研究——基于创业生态系统视角[J]. 地球信息科学学报, 2023, 25(2): 340-353. |
[11] | 齐林君, 翟仁健, 李安平. 顾及坡度和高程的多波束测深数据抽稀算法[J]. 地球信息科学学报, 2023, 25(1): 142-152. |
[12] | 师长兴. 地形扫描数据TIN模型生成DEM的误差计算方法[J]. 地球信息科学学报, 2023, 25(1): 40-48. |
[13] | 高歆, 袁胜元, 李京忠, 赵会兵, 许淑娜. 面向稀疏降水站点的套合各向异性贝叶斯地统计估计研究[J]. 地球信息科学学报, 2022, 24(8): 1445-1458. |
[14] | 丁小花, 王琤, 席俊杰, 王朝, 岳程瑜, 张青峰. 黄土高原地貌类型界线划定研究进展[J]. 地球信息科学学报, 2022, 24(7): 1219-1233. |
[15] | 张娜, 王磊, 殷楠. 结合质心Voronoi图优化的三维Douglas-Peucker地形简化算法[J]. 地球信息科学学报, 2022, 24(7): 1245-1253. |
|