地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (4): 750-765.doi: 10.12082/dqxxkx.2022.210386
于法川1(), 祝善友1,*(
), 张桂欣2, 朱佳恒1, 张南3, 徐永明1
收稿日期:
2021-07-11
修回日期:
2021-09-22
出版日期:
2022-04-25
发布日期:
2022-06-25
通讯作者:
*祝善友(1977— ),男,山东日照人,教授,博导,研究方向为热红外遥感基础理论与应用、生态遥感。 E-mail: zsyzgx@163.com作者简介:
于法川(1997— ),男,山东菏泽人,硕士生,研究方向为遥感气象应用。E-mail: yufc@nuist.edu.cn
基金资助:
YU Fachuan1(), ZHU Shanyou1,*(
), ZHANG Guixin2, ZHU Jiaheng1, ZHANG Nan3, XU Yongming1
Received:
2021-07-11
Revised:
2021-09-22
Online:
2022-04-25
Published:
2022-06-25
Supported by:
摘要:
高时空分辨率的气温栅格数据是多种地学模型和气候模型的重要输入。山区地形复杂,气温空间异质性强,如何获取高时空分辨率的山区地表气温数据一直是研究热点与难点。本文选择地形复杂的河北省张家口市作为试验区,基于局部薄盘样条函数对ERA5再分析日均近地表气温(2 m高度)进行空间插值,并利用随机森林算法,结合少量气象站观测气温数据、地形地表参数数据构建日均气温订正模型和气温逐时化模型,实现空间分辨率由0.1 °(约11 km)到30 m的逐时气温降尺度,最后将该模型拓展应用于其他时间与区域,检验本文发展的降尺度方法在没有站点观测数据条件下的时空移植性。结果显示,本文降尺度方法得到的高时空分辨率山区气温数据精度较高,1月均方根误差(RMSE)平均值为2.4 ℃,明显优于气象站点插值结果,且气温相对高低的空间分布更为合理、纹理更加丰富;将该方法应用到其他时间与区域的RMSE平均值分别为2.9 ℃与2.5 ℃,均小于再分析资料直接插值所产生的误差。研究结果总体表明,在气象站点较少甚至没有时,可利用本文方法通过ERA5再分析气温准确获取复杂地形条件下的山区高时空分辨率气温数据。
于法川, 祝善友, 张桂欣, 朱佳恒, 张南, 徐永明. 复杂山区地形条件下ERA5再分析地表气温降尺度方法[J]. 地球信息科学学报, 2022, 24(4): 750-765.DOI:10.12082/dqxxkx.2022.210386
YU Fachuan, ZHU Shanyou, ZHANG Guixin, ZHU Jiaheng, ZHANG Nan, XU Yongming. A Downscaling Method for Land Surface Air Temperature of ERA5 Reanalysis Dataset under Complex Terrain Conditions in Mountainous Areas[J]. Journal of Geo-information Science, 2022, 24(4): 750-765.DOI:10.12082/dqxxkx.2022.210386
[1] |
Gao L, Bernhardt M, Schulz K. Elevation correction of ERA-Interim temperature data in complex terrain[J]. Hydrology and Earth Syst Gao L, Bernhardt M, Schulz K. Elevation correction of ERA-Interim temperature data in complex terrain[J]. Hydrology and Earth System Sciences, 2012,16(12):4661-4673. DOI: 10.5194/hess-16-4661-2012
doi: 10.5194/hess-16-4661-2012 |
[2] |
Suggitt A J, Wilson R J, Isaac N J B, et al. Extinction risk from climate change is reduced by microclimatic buffering[J]. Nature Climate Change, 2018,8(8):713-717. DOI: 10.1038/s41558-018-0231-9
doi: 10.1038/s41558-018-0231-9 |
[3] |
Gerlitz L. Using fuzzified regression trees for statistical downscaling and regionalization of near surface temperatures in complex terrain: A case study from Khumbu Himal[J]. Theoretical and Applied Climatology, 2015,122(1-2):337-352. DOI: 10.1007/s00704-014-1285-x
doi: 10.1007/s00704-014-1285-x |
[4] |
Di-Vittorio A V, Miller N L. Evaluating a modified point-based method to downscale cell-based climate variable data to high-resolution grids[J]. Theoretical and Applied Climatology, 2013,112(3-4):495-519. DOI: 10.1007/s00704-012-0740-9
doi: 10.1007/s00704-012-0740-9 |
[5] |
Dirksen M, Knap W H, Steeneveld G J, et al. Downscaling daily air-temperature measurements in the Netherlands[J]. Theoretical and Applied Climatology, 2020(1-2):1-17. DOI: 10.1007/s00704-020-03313-1
doi: 10.1007/s00704-020-03313-1 |
[6] |
Tang G, Ali B, Ma Z, et al. Downscaling of ERA-Interim temperature in the contiguous United States and its implications for Rain-Snow partitioning[J]. Journal of Hydrometeorology, 2018,19(7):1215-1233. DOI: 10.1175/JHM-D-18-0041.1
doi: 10.1175/JHM-D-18-0041.1 |
[7] | 段平, 盛业华, 李佳, 等. 自适应的IDW插值方法及其在气温场中的应用[J]. 地理研究, 2014,33(8):31-38. |
[ Duan P, Sheng Y H, Li J, et al. Adaptive IDW interpolation method and its application in the temperature field[J]. Geographical Research, 2014,33(8):31-38. ] | |
[8] |
Merwade V M, Maidment D R, Goff J A. Anisotropic considerations while interpolating river channel bathymetry[J]. Journal of Hydrology, 2006,331(3):731-741. DOI: 10.1016/j.jhydrol.2006.06.018
doi: 10.1016/j.jhydrol.2006.06.018 |
[9] |
Lu G Y, Wong D W. An adaptive inverse-distance weighting spatial interpolation technique[J]. Computers & Geosciences, 2008,34(9):1044-1055. DOI: 10.1016/j.cageo.2007.07.010
doi: 10.1016/j.cageo.2007.07.010 |
[10] |
Zhang W, Liu D, Zheng S, et al. Regional precipitation model based on geographically and temporally weighted Regression Kriging[J]. Remote Sensing, 2020,12(16):2547. DOI: 10.3390/rs12162547
doi: 10.3390/rs12162547 |
[11] |
Cort J, Willmott, et al. Climatologically aided interpolation (CAI) of terrestrial air temperature[J]. International Journal of Climatology, 1995,15(2):221-229. DOI: 10.1002/joc.3370150207
doi: 10.1002/joc.3370150207 |
[12] | 李莎, 舒红, 徐正全. 利用时空Kriging进行气温插值研究[J]. 武汉大学学报·信息科学版, 2012,37(2):237-241. |
[ Li S, Shu H, Xu Z. Interpolation of temperature based on spatial-temporal Kriging[J]. Geomatics and Information Science of Wuhan University, 2012,37(2):237-241. ] | |
[13] |
Zhang X, Shao J A, Luo H. Spatial interpolation of air temperature with ANUSPLIN in Three Gorges Reservoir Area. International Conference on Remote Sensing[C], Environment and Transportation Engineering, IEEE. 2011(147):3465-3468. DOI: 10.1109/RSETE.2011.5965057
doi: 10.1109/RSETE.2011.5965057 |
[14] | Liu Z, Mcvicar T R, Li L T, et al. Modeling spatial distribution of pan evaporation based on quinat-variate thin plate spline function[J]. Science of Soil and Water Conservation, 2006,4(6):23-30. |
[15] |
Wahba G. Spline models for observational data[J]. Mathematics of Computation. 1991. 195(57):444-445. DOI: 10.2307/2938687
doi: 10.2307/2938687 |
[16] | 徐翔, 许瑶, 孙青青, 等. 复杂山地环境下气候要素的空间插值方法比较研究[J]. 华中师范大学学报(自然科学版), 2018,52(1):122-129. |
[ Xu N, Xu Y, Sun Q Q, et al. Comparision study on meteorological spatial interpolation approaches in Kangdian region of China[J]. Journal of Huazhong Normal University(Natural Sciences), 2018,52(1):122-129. ] | |
[17] | 易桂花, 张廷斌, 何奕萱, 等. 四种气温空间插值方法适用性分析[J]. 成都理工大学学报(自然科学版), 2020,47(1):115-128. |
[ Yi G H, Zhang T B, He Y X, et al. Applicability analysis of four spatial interpolation methods for air temperature[J]. Journal of Chengdu University of Technology(Social Sciences), 2020,47(1):115-128. ] | |
[18] |
谭剑波, 李爱农, 雷光斌. 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 2016,35(4):875-886.
doi: 10.7522/j.issn.1000-0534.2015.00037 |
[ Tan J B, Li A N, Lei G B. Contrast on Anusplin and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016,35(4):875-886. ] | |
[19] | 郑小波, 罗宇翔, 于飞, 等. 西南复杂山地农业气候要素空间插值方法比较[J]. 中国农业气象, 2008,29(4):458-462. |
[ Zheng X B, Luo Y X, Yu F, et al. comparisons of spatial interpolation methods for agroclimate factors in complex mountain areas of southwest China[J]. Chinese Journal of agrometeorology, 2008,29(4):458-462. ] | |
[20] |
Liang S, Zeng J, Li Z, et al. Consistent comparison of remotely sensed sea ice concentration products with ERA-Interim reanalysis data in Polar Regions[J]. Remote Sensing, 2020,12(18):2880. DOI: 10.3390/rs12182880
doi: 10.3390/rs12182880 |
[21] |
Johnston B R, Randel W J, Sjoberg J P. Evaluation of tropospheric moisture characteristics among COSMIC-2, ERA5, and MERRA-2 in the tropics and subtropics[J]. Remote Sensing, 2021,13(5):880. DOI: 10.3390/rs13050880
doi: 10.3390/rs13050880 |
[22] |
Wang S, Xu T, Nie W, et al. Evaluation of precipitable water vapor from five reanalysis products with ground-Bbased GNSS observations[J]. Remote Sensing, 2020,12(11):1817. DOI: 10.3390/rs12111817
doi: 10.3390/rs12111817 |
[23] |
Kumar A, Yadav J, Mohan R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica[J]. Environmental Research Letters, 2021,16(2):24-46. DOI: 10.1088/1748-9326/abdc88
doi: 10.1088/1748-9326/abdc88 |
[24] |
Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of American Meteorological Society, 1996,77(3):437-471.
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 |
[25] |
Kistler R, Kalnay E, Collins W, et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J]. Bulletin of the American Meteorological Society, 2001,82(2):247-268. DOI: 10.1175/1520-0477(2001)082
doi: 10.1175/1520-0477(2001)082 |
[26] |
Kazutoshi O, Junichi T, Hiroshi K, et al. The JRA-25 reanalysis[J]. Journal of the Meteorological Society of Japan, 2007,85(3):369-432. DOI: 10.2151/jmsj.85.369
doi: 10.2151/jmsj.85.369 |
[27] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020,146(730):1999-2049. DOI: 10.1002/qj.3803
doi: 10.1002/qj.3803 |
[28] |
Mearns L O, Gutowski W, Jones R, et al. A regional climate change assessment program for North America[J]. Eos Transactions American Geophysical Union, 2009,90(36):311-311. DOI: 10.1029/2009EO360002
doi: 10.1029/2009EO360002 |
[29] | 高谦, 江志红, 李肇新. 多模式动力降尺度对中国中东部地区极端气温指数的模拟评估[J]. 气象学报, 2017,75(6):917-933. |
[ Gao Q, Jiang Z H, Li Z X. Simulation and elaluation of multi-model dynamical downscaling of temperature extreme indices over the Middle and East China[J]. Acta Meteorologica Sinica, 2017,75(6):917-933. ] | |
[30] |
肖林鸿, 高艳红, Chen Fei, 等. 青藏高原极端气温的动力降尺度模拟[J]. 高原气象, 2016,35(3):574-589.
doi: 10.7522/j.issn.1000-0534.2016.00039 |
[ Xiao L H, Gao Y H, Chen F, et al. Dynamic downscaling simulation of extreme temperature indices over the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016,35(3):574-589. ] | |
[31] | 钞振华. 中国西部地区气温资料的统计降尺度研究[J]. 干旱区研究, 2011,28(5):879-879. |
[ Chao Z H. Study on Statistical Downscaling of Air Temperature in West China[J]. Arid Zone Research, 2011,28(5):879-879. ] | |
[32] | Oshima N, Kato H, Kadokura S. An application of statistical downscaling to estimate surface air temperature in Japan[J]. Journal of Geophysical Research, 2002,107(D10):ACL-14. |
[33] | 胡德勇, 乔琨, 王兴玲 等. 利用单窗算法反演Landsat 8 TIRS数据地表温度[J]. 武汉大学学报·信息科学版, 2017,42(7):869-876. |
[ Hu D Y, Qiao K, Wang X L, et al. Comparion of three single-window algorithms for retrieving land-surface temperature with landsat 8 TIRS data[J]. Geomatics and Information Science of Wuhan University, 2017,42(7):869-876. ] | |
[34] | 徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015,58(3):741-747. |
[ Xu Hanqiu. Retrieval of the reflectance and land surface temperature of newly-launched landsat 8 satellite[J]. Chinese Journal of Geophysics, 2015,58(3):741-747. ] | |
[35] |
Breiman L. Random Forest[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[36] |
Salomonson V, Appel I. Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment, 2004,89(3):351-360. DOI: 10.1016/j.rse.2003.10.016
doi: 10.1016/j.rse.2003.10.016 |
[37] |
Dirksen M, Knap W H, Steeneveld G J, et al. Downscaling daily air-temperature measurements in the Netherlands[J]. Theoretical and Applied Climatology, 2020,142:1-17. DOI: 10.1007/s00704-020-03313-1
doi: 10.1007/s00704-020-03313-1 |
[38] |
Liang S. Narrowband to Broadband Conversions of Land Surface Albedo I Algorithms[J]. Remote Sensing of Environment, 2001,76(2):213-238. DOI: 10.1016/S0034-4257(00)00205-4
doi: 10.1016/S0034-4257(00)00205-4 |
[39] |
Mutiibwa D, Strachan S, Albright T. Land Surface Temperature and Surface Air Temperature in Complex Terrain[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016,8(10):4762-4774. DOI: 10.1109/JSTARS.2015.2468594
doi: 10.1109/JSTARS.2015.2468594 |
[40] |
Phan N, Martin K, Jan D. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam[J]. Remote Sensing, 2016,8(12):1002-1025. DOI: 10.3390/rs8121002
doi: 10.3390/rs8121002 |
[41] |
Minder J R, Mote P W, Lundquist J D. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains[J]. Journal of Geophysical Research Atmospheres, 2010,115(D14):333-351. DOI: 10.1029/2009jd013493
doi: 10.1029/2009jd013493 |
[42] | Weng D M, Sun Z A. A preliminary study of the lapse rate of surface air temperature over mountainous regions of china[J]. Geographical Research, 1984,3(2):24-34. |
[43] |
Mahrt L. Variation of surface air temperature in complex terrain[J]. J Appl Meteorol Climatol. 2006. 45(11):1481-1493. DOI: 10.1175/JAM2419.1
doi: 10.1175/JAM2419.1 |
[44] |
Zhang H, Zhu S, Wang M, et al. Sky View Factor Estimation based on 3D Urban Building Data and Its Application in Urban Heat island--Illustrated by the Case of Adelaide[J]. Remote Sensing Technology and Application, 2015,30(5):899-907. DOI: 10.1016/j.uclim.2019.100498
doi: 10.1016/j.uclim.2019.100498 |
[1] | 单宝艳, 张巧, 任启新, 樊文平, 吕永强. 基于局地气候分区的济南市热环境空间分异及其 影响因素[J]. 地球信息科学学报, 2022, 24(4): 711-722. |
[2] | 章敏, 吴文挺, 汪小钦, 孙玉. 基于潮汐动态淹没过程的长江口潮滩地形信息反演研究[J]. 地球信息科学学报, 2022, 24(3): 583-596. |
[3] | 詹琪琪, 赵伟, 杨梦娇, 付浩, 李昕娟, 熊东红. 雅鲁藏布江中部流域土地沙化遥感识别[J]. 地球信息科学学报, 2022, 24(2): 391-404. |
[4] | 李文萍, 王伟, 高星, 伍宇明, 王学成, 刘青. 融合面向对象和分水岭算法的山地湖泊提取方法[J]. 地球信息科学学报, 2021, 23(7): 1272-1285. |
[5] | 李志红, 李旺平, 王玉, 陈璐, 郁林, 周兆叶, 郝君明, 吴晓东, 李传华. 基于离散粒子群算法的2种新型水体提取方法的对比与验证[J]. 地球信息科学学报, 2021, 23(6): 1106-1117. |
[6] | 管琪卉, 丁明军, 张华, 王鹏. ESTARFM算法在长江中下游平原地区的适用性研究[J]. 地球信息科学学报, 2021, 23(6): 1118-1130. |
[7] | 彭妍菲, 李忠勤, 姚晓军, 牟建新, 韩伟孝, 王盼盼. 基于多源遥感数据和GEE平台的博斯腾湖面积变化及影响因素分析[J]. 地球信息科学学报, 2021, 23(6): 1131-1153. |
[8] | 杨灿灿, 许芳年, 江岭, 王瑞璠, 尹力, 赵明伟, 张鲜鲜. 基于街景影像的城市道路空间舒适度研究[J]. 地球信息科学学报, 2021, 23(5): 785-801. |
[9] | 杨帅, 杨娜, 陈传法, 常兵涛, 高原, 郑婷婷. 顾及数据配准的江西省SRTM DEM精度评价和修正[J]. 地球信息科学学报, 2021, 23(5): 869-881. |
[10] | 於佳宁, 刘凯, 张冰玥, 黄滢, 范晨雨, 宋春桥, 汤国安. 中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析[J]. 地球信息科学学报, 2021, 23(4): 646-657. |
[11] | 乔丹玉, 郑进辉, 鲁晗, 邓磊. 面向不同环境背景的Landsat影像水体提取方法适用性研究[J]. 地球信息科学学报, 2021, 23(4): 710-722. |
[12] | 孔乔, 韩露, 刘兴坡, 丁永生, 王一帆. 一种采用SRTM DEM重构河床数字地形的方法[J]. 地球信息科学学报, 2021, 23(3): 385-394. |
[13] | 张俊兵, 沈润平, 师春香, 白磊, 刘军建, 孙帅. 中国大陆地区ERA5下行短波辐射数据适用性评估与对比[J]. 地球信息科学学报, 2021, 23(12): 2261-2274. |
[14] | 帅艳民, 马现伟, 曲歌, 邵聪颖, 刘涛, 刘守民, 黄华兵, 谷玲霄, 拉提帕·吐尔汗江, 梁继, 李玲. 协同多时相波谱特征的不透水面信息级联提取[J]. 地球信息科学学报, 2021, 23(1): 171-186. |
[15] | 刘明杰, 徐卓揆, 郜允兵, 杨晶, 潘瑜春, 高秉博, 周艳兵, 周万鹏, 王凌. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020, 22(9): 1799-1813. |
|