[1] |
Li W, Wang J X, Fan R, et al. Short-term traffic state prediction from latent structures: Accuracy vs. efficiency[J]. Transportation Research Part C: Emerging Technologies, 2020, 111:72-90. DOI: 10.1016/j.trc.2019.12.007
doi: 10.1016/j.trc.2019.12.007
|
[2] |
Coogan S, Flores C, Varaiya P. Traffic predictive control from low-rank structure[J]. Transportation Research Part B: Methodological, 2017, 97:1-22. DOI: 10.1016/j.trb.2016.11.013
doi: 10.1016/j.trb.2016.11.013
|
[3] |
Wu S S, Wang Z Y, Du Z H, et al. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships[J]. International Journal of Geographical Information Science, 2021, 35(3):582-608. DOI: 10.1080/13658816.2020.1775836
doi: 10.1080/13658816.2020.1775836
|
[4] |
Cai P L, Wang Y P, Lu G Q, et al. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C: Emerging Technologies, 2016, 62:21-34. DOI: 10.1016/j.trc.2015.11.002
doi: 10.1016/j.trc.2015.11.002
|
[5] |
Toshniwal D, Chaturvedi N, Parida M, et al. Application of clustering algorithms for spatio-temporal analysis of urban traffic data[J]. Transportation Research Procedia, 2020, 48:1046-1059. DOI: 10.1016/j.trpro.2020.08.132
doi: 10.1016/j.trpro.2020.08.132
|
[6] |
Deng M, Yang W T, Liu Q L, et al. Heterogeneous space-time artificial neural networks for space-time series prediction[J]. Transactions in GIS, 2018, 22(1):183-201. DOI: 10.1111/tgis.12302
doi: 10.1111/tgis.12302
|
[7] |
梁艳平, 毛政元, 邹为彬, 等. 基于相似数据聚合与变K值KNN的短时交通流量预测[J]. 地球信息科学学报, 2018, 20(10):1403-1411.
doi: 10.12082/dqxxkx.2018.180281
|
|
[ Liang Y P, Mao Z Y, Zou W B, et al. Short-term traffic flow prediction based on similar data aggregation and KNN with varying K-value[J]. Journal of Geo-Information Science, 2018, 20(10):1403-1411. ] DOI: 10.12082/dqxxkx.2018.180281
doi: 10.12082/dqxxkx.2018.180281
|
[8] |
姚卫红, 方仁孝, 张旭东. 基于混合人工鱼群优化SVR的交通流量预测[J]. 大连理工大学学报, 2015, 55(6):632-637.
|
|
[ Yao W H, Fang R X, Zhang X D. Traffic flow forecasting based on optimized SVR with hybrid artificial fish swarm algorithm[J]. Journal of Dalian University of Technology, 2015, 55(6):632-637. ] DOI: 10.7511/dllgxb201506011
doi: 10.7511/dllgxb201506011
|
[9] |
Yu H Y, Wu Z H, Wang S Q, et al. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors (Basel, Switzerland), 2017, 17(7):1501. DOI: 10.3390/s17071501
doi: 10.3390/s17071501
|
[10] |
李明晓, 张恒才, 仇培元, 等. 一种基于模糊长短期神经网络的移动对象轨迹预测算法[J]. 测绘学报, 2018, 47(12):1660-1669.
|
|
[ Li M X, Zhang H C, Qiu P Y, et al. Predicting future locations with deep fuzzy-LSTM network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12):1660-1669. ] DOI: CNKI:SUN:CHXB.0.2018-12-012
doi: CNKI:SUN:CHXB.0.2018-12-012
|
[11] |
Davis G A, Nihan N L. Nonparametric regression and short-term freeway traffic forecasting[J]. Journal of Transportation Engineering, 1991, 117(2):178-188. DOI: 10.1061/(ASCE)0733-947X(1991)117:2(178)
doi: 10.1061/(ASCE)0733-947X(1991)117:2(178
|
[12] |
Yu B, Song X L, Guan F, et al. K-nearest neighbor model for multiple-time-step prediction of short-term traffic condition[J]. Journal of Transportation Engineering, 2016, 142(6):04016018. DOI: 10.1061/(ASCE)TE.1943-5436.0000816
doi: 10.1061/(ASCE)TE.1943-5436.0000816
|
[13] |
Ryu U, Wang J A, Kim T, et al. Construction of traffic state vector using mutual information for short-term traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2018, 96:55-71. DOI: 10.1016/j.trc.2018.09.015
doi: 10.1016/j.trc.2018.09.015
|
[14] |
Cheng S F, Lu F, Peng P. Short-term traffic forecasting by mining the non-stationarity of spatiotemporal patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 99:1-19. DOI: 10.1109/tits.2020.2991781
doi: 10.1109/tits.2020.2991781
|
[15] |
Cheng S F, Lu F, Peng P, et al. A spatiotemporal multi-view-based learning method for short-term traffic forecasting[J]. ISPRS International Journal of Geo-information, 2018, 7(6):218. DOI: 10.3390/ijgi7060218
doi: 10.3390/ijgi7060218
|
[16] |
Stathopoulos A, Karlaftis M G. A multivariate state space approach for urban traffic flow modeling and prediction[J]. Transportation Research Part C, 2003, 11(2):121-135. DOI: 10.1016/S0968-090X(03)00004-4
doi: 10.1016/S0968-090X(03)00004-4
|
[17] |
Rakthanmanon T, Campana B, Mueen A, et al. Searching and mining trillions of time series subsequences under dynamic time warping[J]. KDD: Proceedings International Conference on Knowledge Discovery & Data Mining, 2012, 2012:262-270. DOI: 10.1145/2339530.2339576
doi: 10.1145/2339530.2339576
|
[18] |
Chalapathy R, Chawla S. Deep learning for anomaly detection: A Survey[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2019.
|
[19] |
Cheng S F, Lu F, Peng P, et al. Short-term traffic forecasting: An adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71:186-198. DOI: 10.1016/j.compenvurbsys.2018.05.009
doi: 10.1016/j.compenvurbsys.2018.05.009
|