地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (1): 87-99.doi: 10.12082/dqxxkx.2022.210421
戴云哲1,2(), 杨建新3,5,*(
), 龚健3,5, 叶菁3,5, 李靖业3, 李云4
收稿日期:
2021-07-23
修回日期:
2021-10-12
出版日期:
2022-01-25
发布日期:
2022-03-25
通讯作者:
* 杨建新(1988— ),男,湖北鄂州人,副教授,主要从事土地变化模拟和生态系统服务评估相关研究。E-mail: yangjianxin@cug.edu.cn作者简介:
戴云哲(1990— ),男,湖北恩施人,讲师,研究方向为土地资源评价与规划。E-mail: efflorescence@foxmail.com
基金资助:
DAI Yunzhe1,2(), YANG Jianxin3,5,*(
), GONG Jian3,5, YE Jing3,5, LI Jingye3, LI Yun4
Received:
2021-07-23
Revised:
2021-10-12
Online:
2022-01-25
Published:
2022-03-25
Supported by:
摘要:
理解城镇增长过程、模式、机理并预判未来发展趋势,对优化城镇空间布局,促进城市可持续发展有重要意义。元胞自动机模型(Cellular Automata, CA)是研究城镇增长过程、模式的有效技术手段,但传统CA模型对城镇增长过程和空间模式的协同考虑不足。本研究构建了基于斑块(Patch)的城镇CA模型AutoPaCA,实现对城镇增长过程及空间模式的协同表征和精细控制,将城镇增长过程分为边缘增长和跳跃增长两种形式,并实现了对不同形式下城镇斑块位置、形状和面积大小的精细控制,同时考虑城镇空间模式的集聚性、整体形态及空间约束。此外,还提出使用景观格局分析法分析历史时期城镇增长过程和模式,并结合遗传算法实现对模型参数的地域化自动校正,降低人为主观因素对模拟结果的影响。将模型应用于长沙市1995—2035年的城镇增长模拟与多情景分析。结果表明,构建的AutoPaCA模型可以取得较好的模型精度,200次模拟结果的互异邻域相似性指数均值达到0.486;在生态保护情景下,长沙市城市内部生态结构保存完好,且表现出更为明显的长株潭一体化趋势,说明本研究提出的AutoPaCA模型及参数校正方法是有效的。
戴云哲, 杨建新, 龚健, 叶菁, 李靖业, 李云. AutoPaCA:耦合过程-模式的城镇空间增长模拟模型[J]. 地球信息科学学报, 2022, 24(1): 87-99.DOI:10.12082/dqxxkx.2022.210421
DAI Yunzhe, YANG Jianxin, GONG Jian, YE Jing, LI Jingye, LI Yun. AutoPaCA: Coupling Process and Spatial Pattern to Simulate Urban Growth[J]. Journal of Geo-information Science, 2022, 24(1): 87-99.DOI:10.12082/dqxxkx.2022.210421
表1
AutoPaCA参数初始值、取值范围及优化值
参数 | 初始值 | 值域 | 优化值 | ||
---|---|---|---|---|---|
每次循环中新开发城镇建设用地的面积a/hm2 | 2000 | [1000, 3000] | 2014.45 | ||
每次循环中边缘增长的面积比例β | 0.79 | [0.5, 1] | 0.63 | ||
斑块面积和形状参数 | 边缘增长 | 均值 | 92.89 | [35.51, 150.27] | 32.72 |
方差 | 425.59 | [127.46, 723.73] | 145.73 | ||
形状控制参数 | 1.00 | [0, 1] | 0.51 | ||
跳跃式增长 | 均值 | 17.27 | [15.59, 18.94] | 17.52 | |
方差 | 52.88 | [36.57, 69.19] | 49.29 | ||
形状控制参数 | 1.00 | [0, 1] | 0.62 |
[1] |
D'Amour C B, Reitsma F, Baiocchi G, et al. Future urban land expansion and implications for global croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(34):8939-8944. DOI: 10.1073/pnas.1606036114
doi: 10.1073/pnas.1606036114 |
[2] |
Brown D G, Verburg P H, Pontius R G Jr, et al. Opportunities to improve impact, integration, and evaluation of land change models[J]. Current Opinion in Environmental Sustainability, 2013, 5(5):452-457. DOI: 10.1016/j.cosust.2013.07.012
doi: 10.1016/j.cosust.2013.07.012 |
[3] |
Batty M, Couclelis H, Eichen M. Urban systems as cellular automata[J]. Environment and Planning B: Planning and Design, 1997, 24(2):159-164. DOI: 10.1068/b240159
doi: 10.1068/b240159 |
[4] |
Tobler W R. Cellular geography[M]// Philosophy in Geography. Dordrecht: Springer Netherlands, 1979:379-386. DOI: 10.1007/978-94-009-9394-5
doi: 10.1007/978-94-009-9394-5 |
[5] |
Liu Y, Batty M, Wang S, et al. Modelling urban change with cellular automata: Contemporary issues and future research directions[J]. Progress in Human Geography, 2021, 45(1):3-24. DOI: 10.1177%2F0309132519895305
doi: 10.1177%2F0309132519895305 |
[6] |
Yang J X, Gong J A, Tang W W, et al. Patch-based cellular automata model of urban growth simulation: Integrating feedback between quantitative composition and spatial configuration[J]. Computers, Environment and Urban Systems, 2020, 79:101402. DOI: 10.1016/j.compenvurbsys.2019.101402
doi: 10.1016/j.compenvurbsys.2019.101402 |
[7] |
Cao M, Huang M, Xu R, et al. A grey wolf optimizer-cellular automata integrated model for urban growth simulation and optimization[J]. Transactions in GIS, 2019, 23(4):672-687. DOI: 10.1111/tgis.12517
doi: 10.1111/tgis.12517 |
[8] |
Aquilué N, De Cáceres M, Fortin M, et al. A spatial allocation procedure to model land-use/land-cover changes: Accounting for occurrence and spread processes[J]. Ecological Modelling, 2017, 344(1):73-86. DOI: 10.1016/j.ecolmodel.2016.11.005
doi: 10.1016/j.ecolmodel.2016.11.005 |
[9] |
Liao J F, Tang L N, Shao G F, et al. A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence[J]. International Journal of Geographical Information Science, 2014, 28(4):720-738. DOI: 10.1080/13658816.2013.869820
doi: 10.1080/13658816.2013.869820 |
[10] |
Dahal K R, Chow T E. Characterization of neighborhood sensitivity of an irregular cellular automata model of urban growth[J]. International Journal of Geographical Information Science, 2015, 29(3):475-497. DOI: 10.1080/13 658816.2014.987779
doi: 10.1080/13 658816.2014.987779 |
[11] |
Yao Y, Liu X P, Li X, et al. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata[J]. International Journal of Geographical Information Science, 2017, 31(12):2452-2479. DOI: 10.1080/13658816.2017.1360494
doi: 10.1080/13658816.2017.1360494 |
[12] |
Gounaridis D, Chorianopoulos I, Koukoulas S. Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: The case of Athens[J]. Applied Geography, 2018, 90(1):134-144. DOI: 10.1080/13658810903270551
doi: 10.1080/13658810903270551 |
[13] |
Liu X P, Li X, Shi X, et al. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata[J]. International Journal of Geographical Information Science, 2010, 24(5):783-802. DOI: 10.1080/13658810903270551
doi: 10.1080/13658810903270551 |
[14] |
Mustafa A, Saadi I, Cools M, et al. A Time Monte Carlo method for addressing uncertainty in land-use change models[J]. International Journal of Geographical Information Science, 2018, 32(11):2317-2333. DOI: 10.1080/13658816.2018.1503275
doi: 10.1080/13658816.2018.1503275 |
[15] |
Mustafa A, Cools M, Saadi I, et al. Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)[J]. Land Use Policy, 2017, 69(12):529-540. DOI: 10.1016/j.landusepol.2017.10.009
doi: 10.1016/j.landusepol.2017.10.009 |
[16] |
Verstegen J A, Karssenberg D, van der Hilst F, et al. Identifying a land use change cellular automaton by Bayesian data assimilation[J]. Environmental Modelling & Software, 2014, 53:121-136. DOI: 10.1016/j.envsoft.2013.11.009
doi: 10.1016/j.envsoft.2013.11.009 |
[17] |
He J L, Li X, Yao Y, et al. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques[J]. International Journal of Geographical Information Science, 2018, 32(10):2076-2097. DOI: 10.1080/13658816.2018.1480783
doi: 10.1080/13658816.2018.1480783 |
[18] | 黎夏, 叶嘉安. 基于神经网络的元胞自动机及模拟复杂土地利用系统[J]. 地理研究, 2005, 24(1):19-27. |
[ Li X, Yeh A G. Cellular automata for simulating complex land use systems using neural networks[J]. Geographical Research, 2005, 24(1):19-27. ] DOI: 10.3321/j.issn:1000-0585.2005.01.003
doi: 10.3321/j.issn:1000-0585.2005.01.003 |
|
[19] | 杨建新, 龚健, 李江风. 基于LSSVM-CA模型的复杂土地利用变化模拟——以鄂州市为例[J]. 资源科学, 2016, 38(8):1525-1537. |
[ Yang J X, Gong J A, Li J F. Complex land use changes simulation in Ezhou City using cellular automata based on least squares support vector machine[J]. Resources Science, 2016, 38(8):1525-1537. ] DOI: 10.18402/resci.2016.08.11
doi: 10.18402/resci.2016.08.11 |
|
[20] |
Yang, Gong, Tang, et al. Delineation of urban growth boundaries using a patch-based cellular automata model under multiple spatial and socio-economic scenarios[J]. Sustainability, 2019, 11(21):6159. DOI: 10.3390/su11216159
doi: 10.3390/su11216159 |
[21] | 李沁, 沈明, 高永年, 等. 基于改进粒子群算法和元胞自动机的城市扩张模拟——以南京为例[J]. 长江流域资源与环境, 2017, 26(2):190-197. |
[ Li Q, Shen M, Gao Y N, et al. Urban expansion simulation using modified particle swarm optimization algorithm and cellular automata: A case study of Nanjing city[J]. Resources and Environment in the Yangtze Basin, 2017, 26(2):190-197. ] DOI: 10.11870/cjlyzyyhj201702004
doi: 10.11870/cjlyzyyhj201702004 |
|
[22] |
Chen Y M, Li X, Liu X P, et al. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy[J]. International Journal of Geographical Information Science, 2014, 28(2):234-255. DOI: 10.1080/1365 8816.2013.831868
doi: 10.1080/1365 8816.2013.831868 |
[23] |
Meentemeyer R K, Tang W W, Dorning M A, et al. Futrues: multilevel simulations of emerging urban-rural landscape structure using a stochastic patch-growing algorithm[J]. Annals of the Association of American Geographers, 2013, 103(4):785-807. DOI: 10.1080/00045608.20 12.707591
doi: 10.1080/00045608.20 12.707591 |
[24] |
Richard S, Rebecca C K, Spencer A W, et al. InVEST user's guide[M]. Washington, D C: World Wildlife Fund, 2018. DOI: 10.13140/RG.2.2.32693.78567
doi: 10.13140/RG.2.2.32693.78567 |
[25] | 包玉斌, 刘康, 李婷, 等. 基于InVEST模型的土地利用变化对生境的影响——以陕西省黄河湿地自然保护区为例[J]. 干旱区研究, 2015, 32(3):622-629. |
[ Bao Y B, Liu K, Li T, et al. Effects of land use change on habitat based on in VEST model—taking Yellow River wetland nature reserve in Shaanxi Province as an example[J]. Arid Zone Research, 2015, 32(3):622-629. ] DOI: 10.13866/j.azr.2015.05.29
doi: 10.13866/j.azr.2015.05.29 |
|
[26] | 张影, 谢余初, 齐姗姗, 等. 基于InVEST模型的甘肃白龙江流域生态系统碳储量及空间格局特征[J]. 资源科学, 2016, 38(8):1585-1593. |
[ Zhang Y, Xie Y C, Qi S S, et al. Carbon storage and spatial distribution characteristics in the Bailongjiang Watershed in Gansu based on In VEST model[J]. Resources Science, 2016, 38(8):1585-1593. ] DOI: 10.18402/resci.2016.08.16
doi: 10.18402/resci.2016.08.16 |
|
[27] | 李婷, 刘康, 胡胜, 等. 基于InVEST模型的秦岭山地土壤流失及土壤保持生态效益评价[J]. 长江流域资源与环境, 2014, 23(9):1242-1250. |
[ Li T, Liu K, Hu S, et al. Soil erosion and ecological benefits evaluation of Qinling mountains based on the invest model[J]. Resources and Environment in the Yangtze Basin, 2014, 23(9):1242-1250. ] DOI: 10.11870/cjlyzyyhj201409009
doi: 10.11870/cjlyzyyhj201409009 |
|
[28] |
包玉斌, 李婷, 柳辉, 等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J]. 地理研究, 2016, 35(4):664-676.
doi: 10.11821/dlyj201604006 |
[ Bao Y B, Li T, Liu H, et al. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi Province by InVEST model[J]. Geographical Research, 2016, 35(4):664-676. ] DOI: 10.11821/dlyj201604006
doi: 10.11821/dlyj201604006 |
|
[29] |
喻忠磊, 张文新, 梁进社, 等. 国土空间开发建设适宜性评价研究进展[J]. 地理科学进展, 2015, 34(9):1107-1122.
doi: 10.18306/dlkxjz.2015.09.004 |
[ Yu Z L, Zhang W X, Liang J S, et al. Progress in evaluating suitability of spatial development and construction land[J]. Progress in Geography, 2015, 34(9):1107-1122. ] DOI: 10.18306/dlkxjz.2015.09.004
doi: 10.18306/dlkxjz.2015.09.004 |
|
[30] | 张大川, 刘小平, 姚尧, 等. 基于随机森林CA的东莞市多类土地利用变化模拟[J]. 地理与地理信息科学, 2016, 32(5):29-36,127. |
[ Zhang D C, Liu X P, Yao Y, et al. Simulating spatiotemporal change of multiple land use types in Dongguan by using random forest based on cellular automata[J]. Geography and Geo-Information Science, 2016, 32(5):29-36,127. ] DOI: 10.3969/j.issn.1672-0504.2016.05.005
doi: 10.3969/j.issn.1672-0504.2016.05.005 |
|
[31] |
Soares-Filho B S, Cerqueira G C, Pennachin C L. Dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier[J]. Ecological Modelling, 2002, 154(3):217-235. DOI: 10.1016/S0304-3800(02)00059-5
doi: 10.1016/S0304-3800(02)00059-5 |
[32] |
Ke X L, Zheng W W, Zhou T, et al. A CA-based land system change model: LANDSCAPE[J]. International Journal of Geographical Information Science, 2017, 31(9):1798-1817. DOI: 10.1080/13658816.2017.1315536
doi: 10.1080/13658816.2017.1315536 |
[33] |
Wang Q J. Using genetic algorithms to optimise model parameters[J]. Environmental Modelling & Software, 1997, 12(1):27-34. DOI: 10.1016/S1364-8152(96)00030-8
doi: 10.1016/S1364-8152(96)00030-8 |
[34] |
Soares-Filho B, Rodrigues H, Follador M. A hybrid analytical-heuristic method for calibrating land-use change models[J]. Environmental Modelling & Software, 2013, 43(5):80-87. DOI: 10.1016/j.envsoft.2013.01.010
doi: 10.1016/j.envsoft.2013.01.010 |
[35] |
刘小平, 黎夏, 陈逸敏, 等. 景观扩张指数及其在城市扩展分析中的应用[J]. 地理学报, 2009, 64(12):1430-1438.
doi: 10.11821/xb200912003 |
[ Liu X P, Li X, Chen Y M, et al. Landscape expansion index and its applications to quantitative analysis of urban expansion[J]. Acta Geographica Sinica, 2009, 64(12):1430-1438. ] DOI: 10.3321/j.issn:0375-5444.2009.12.003
doi: 10.3321/j.issn:0375-5444.2009.12.003 |
|
[36] |
McGarigal K, Marks B J. Fragstats—Spatial pattern analysis program for quantifying landscape structure[M]. Washington, DC: U.S. Department of Agriculture, 1995.DOI: 10.2737/PNW-GTR-351
doi: 10.2737/PNW-GTR-351 |
[37] |
Hagen A. Fuzzy set approach to assessing similarity of categorical maps[J]. International Journal of Geographical Information Science, 2003, 17(3):235-249. DOI: 10.1080/13658810210157822
doi: 10.1080/13658810210157822 |
[38] |
Rodrigues H, Soares-Filho B. A short presentation of dinamica EGO[M]//Geomatic Approaches for Modeling Land Change Scenarios. Cham: Springer International Publishing, 2017:493-498. DOI: 10.5194/isprsarchives-XL-3-W3-67-2015
doi: 10.5194/isprsarchives-XL-3-W3-67-2015 |
[39] | 蒋祺, 郑伯红. 城市用地扩展对长沙市水系变化的影响[J]. 自然资源学报, 2019, 34(7):1429-1439. |
[ Jiang Q, Zheng B H. The relationship between the change of water system and the urban land expansion in Changsha[J]. Journal of Natural Resources, 2019, 34(7):1429-1439. ] DOI: 10.31497/zrzyxb.20190707
doi: 10.31497/zrzyxb.20190707 |
|
[40] |
Liu J Y, Teng X Y, Xiao J K. Application of shuttle imaging radar data for land use investigations[J]. Remote Sensing of Environment, 1986, 19(3):291-301. DOI: 10.1016/0034-4257(86)90058-1
doi: 10.1016/0034-4257(86)90058-1 |
[41] |
Yao Y, Li X, Liu X P, et al. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model[J]. International Journal of Geographical Information Science, 2017, 31(4):825-848. DOI: 10.1080/13658816.2016.1244608
doi: 10.1080/13658816.2016.1244608 |
[42] |
Silverman B W. Density estimation for statistics and data analysis[M]. New York: Routledge, 2018:120-158. DOI: 10.1080/00401706.1987.10488295
doi: 10.1080/00401706.1987.10488295 |
[43] | 戴云哲. 湖南省土地生态服务功能演化特征及优化路径研究[D]. 武汉:中国地质大学, 2019. |
[ Dai Y Z. A study on evolution and optimization of land ecosystem services in Hunan Province[D]. Wuhan: China University of Geosciences, 2019. ] DOI: 10.27492/d.cnki.gzdzu.2019.000090
doi: 10.27492/d.cnki.gzdzu.2019.000090 |
[1] | 王烁棋, 赵亮. 山城眺望空间OSCA模型构建及应用[J]. 地球信息科学学报, 2021, 23(9): 1559-1574. |
[2] | 杨练兵, 陈春波, 郑宏伟, 罗格平, 尚白军, Olaf Hellwich. 基于优化随机森林回归模型的土壤盐渍化反演[J]. 地球信息科学学报, 2021, 23(9): 1662-1674. |
[3] | 邢晓语, 杨秀春, 徐斌, 金云翔, 郭剑, 陈昂, 杨东, 王平, 朱立博. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7): 1312-1324. |
[4] | 李慧香, 潘云, 宫辉力, 孙颖. 机器学习方法在预测泉水潜在出露位置中的应用[J]. 地球信息科学学报, 2021, 23(6): 1028-1039. |
[5] | 方秀琴, 郭晓萌, 袁玲, 杨露露, 任立良, 朱求安. 随机森林算法在全球干旱评估中的应用[J]. 地球信息科学学报, 2021, 23(6): 1040-1049. |
[6] | 张菊, 房世波, 刘汉湖. 基于微波数据与光学数据集成的机器学习技术在作物产量估算中的应用[J]. 地球信息科学学报, 2021, 23(6): 1082-1091. |
[7] | 张毅, 朱攀. 电动出租车专用充电场站选址模型研究[J]. 地球信息科学学报, 2021, 23(5): 802-811. |
[8] | 杨帅, 杨娜, 陈传法, 常兵涛, 高原, 郑婷婷. 顾及数据配准的江西省SRTM DEM精度评价和修正[J]. 地球信息科学学报, 2021, 23(5): 869-881. |
[9] | 文超, 詹庆明, 樊智宇, 湛德, 赵皇, 吴凯. 1979—2019年武汉市重点水体多要素协同的时空演变特征[J]. 地球信息科学学报, 2021, 23(11): 2055-2072. |
[10] | 张世伟, 魏璐瑶, 金星星, 陆玉麒. 基于FLUS-UGB的县域土地利用模拟及城镇开发边界划定研究[J]. 地球信息科学学报, 2020, 22(9): 1848-1859. |
[11] | 赵鹏军, 曹毓书. 基于多源地理大数据与机器学习的地铁乘客出行目的识别方法[J]. 地球信息科学学报, 2020, 22(9): 1753-1765. |
[12] | 蒲东川, 王桂周, 张兆明, 牛雪峰, 何国金, 龙腾飞, 尹然宇, 江威, 孙嘉悦. 基于独立成分分析和随机森林算法的城镇用地提取研究[J]. 地球信息科学学报, 2020, 22(8): 1597-1606. |
[13] | 朱守杰, 杜世宏, 李军, 商硕硕, 杜守基. 融合多源空间数据的城镇人口分布估算[J]. 地球信息科学学报, 2020, 22(8): 1607-1616. |
[14] | 李婉, 牛陆, 陈虹, 吴骅. 基于随机森林算法的地表温度鲁棒降尺度方法[J]. 地球信息科学学报, 2020, 22(8): 1666-1678. |
[15] | 毛亚萍, 房世峰. 基于机器学习的参考作物蒸散量估算研究[J]. 地球信息科学学报, 2020, 22(8): 1692-1701. |
|