地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (4): 617-630.doi: 10.12082/dqxxkx.2022.210422

• 综述 • 上一篇    下一篇

城市地表热辐射方向性研究进展综述

韦乐田1(), 姜小光1,2,*(), 吴骅3, 茹晨1   

  1. 1.中国科学院大学 资源与环境学院,北京 100049
    2.中国科学院空天信息创新研究院 定量遥感信息技术院重点实验室,北京 100094
    3.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
  • 收稿日期:2021-07-23 修回日期:2021-09-28 出版日期:2022-04-25 发布日期:2022-06-25
  • 通讯作者: *姜小光(1960— ),男,北京人,教授,博士生导师,主要从事定量遥感、地表真实性检验等研究。 E-mail: xgjiang@ucas.ac.cn
  • 作者简介:韦乐田(1996— ),女,浙江杭州人,硕士生,主要从事热红外定量遥感研究。E-mail: weiletian19@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(41971319)

Review of Urban Thermal Radiation Anisotropy

WEI Letian1(), JIANG Xiaoguang1,2,*(), WU Hua3, RU Chen1   

  1. 1. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    2. Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    3. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2021-07-23 Revised:2021-09-28 Online:2022-04-25 Published:2022-06-25
  • Supported by:
    National Natural Science Foundation of China(41971319)

摘要:

热辐射方向性是指从不同方向观测同一目标地物时,测得的热辐射值各异的现象,通常体现为方向性辐亮度或亮温各异。随着高空间分辨率遥感数据的出现,面对高精度地表温度产品的需求,热辐射方向性效应不可忽视,如今已成为热红外遥感重点关注的问题之一。对于物质组成不均一、几何结构复杂的城市地表来说,热辐射方向性尤为显著。本文整理、分析了在城市地区开展的一系列热辐射方向性观测试验和正演模型,其中也包括一些对地表温度真值的有益探索;并对城市热辐射方向性强度的影响因素进行了归纳,包括观测季节与时间、地表几何结构、材料自身的物理属性、观测角度、视场角等,这些因素会使热辐射方向性的强度呈现出一定的时空规律性。最后,针对提高城市地表温度的反演精度、如何更好地开展城市热辐射方向性研究提出了5点展望。

关键词: 城市地表温度, 热辐射方向性, 完全表面温度, 方向亮温, 多角度观测, 几何三维模型, 辐射传输模型, 参数模型

Abstract:

Thermal radiation directionality refers to the phenomenon that thermal radiation values measured from different observation directions are different for a certain surface object, which is usually reflected in different directional radiance or different brightness temperature. With the emergence of high spatial resolution remotely sensed data and the demand for high-precision surface temperature products, the effect of thermal radiation anisotropy cannot be ignored. Now it has become one of the hottest issues concerned widely in the thermal infrared field. The thermal anisotropy is more obvious for the urban surface with diverse surface features and complex geometric structure. This article describes three observational experiments, including ground observation experiment, airborne observation experiment, and space observation experiment. These three methods have their own advantages and disadvantages and can be used in different situations. The observation data that represents the reality of urban radiation directionality often shows obvious thermal radiation anisotropy in urban areas during the daytime. In addition, a series of forward models of thermal radiation anisotropy carried out in urban areas are categorized and analyzed. These models can be divided into three categories: geometric three-dimensional model, radiative transfer model, and parameter model. According to existing academic papers, in-situ observation data are usually used to estimate the coefficients and verify the simulation accuracy of forward models. By combining these two approaches, observations and models, some scholars have made some achievements in this field. The purpose of studying thermal radiation anisotropy in urban areas is to obtain land surface parameters with higher accuracy. So, the exploration of true values of urban surface temperature are also included in this study. Furthermore, the impact factors of thermal radiation anisotropy are summarized, such as observation season and time, surface geometry, physical properties of surface materials, observation angle, FOV of sensor, etc. which influence the spatial and temporal patterns of intensity of thermal radiation anisotropy. At last, for the ultimate goal of improving the retrieval accuracy of urban surface temperature, five prospects are put forward: using high-resolution thermal infrared sensors to get the data of urban thermal background field, carrying out more thermal infrared multi-angle remote sensing experiments from different platforms, improving understanding of the mechanism of thermal radiation of non-isothermal heterogeneous pixels, performing validation of urban surface temperature, applying the research results into practice such as angle correction of satellite temperature products.

Key words: urban land surface temperature, thermal radiation anisotropy, complete surface temperature, directional brightness temperature, multi-angle observation, geometric three-dimensional model, radiative transfer model, parameter model