地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (4): 780-791.doi: 10.12082/dqxxkx.2022.210446
陈点点1(), 陈芸芝1,*(
), 冯险峰2,3, 武爽2,3
收稿日期:
2021-08-03
修回日期:
2021-09-21
出版日期:
2022-04-25
发布日期:
2022-06-25
通讯作者:
*陈芸芝(1982— ),女,福建连江人,博士,副研究员,研究方向为资源与生态环境监测研究。 E-mail: chenyunzhi@fzu.edu.cn作者简介:
陈点点(1997— ),女,山东临沂人,硕士生,研究方向为自然资源与水环境遥感。E-mail: 965519776@qq.com
基金资助:
CHEN Diandian1(), CHEN Yunzhi1,*(
), FENG Xianfeng2,3, WU Shuang2,3
Received:
2021-08-03
Revised:
2021-09-21
Online:
2022-04-25
Published:
2022-06-25
Contact:
CHEN Yunzhi
Supported by:
摘要:
悬浮物浓度(TSM)是水生态环境评价的重要参数之一,及时掌握河流悬浮物浓度动态变化信息对于内陆水质监测、水环境治理是十分必要的。本研究基于野外实测光谱和悬浮物浓度数据,筛选与悬浮物浓度高度相关的波段组合反射率作为自变量,基于CatBoost、随机森林和多元线性回归算法构建悬浮物浓度遥感反演模型,采用带交叉验证的网格搜索法分别对CatBoost和随机森林2种机器学习模型进行超参数调优,确定模型最优参数配置,并对比不同模型反演精度,确定最优模型。基于最优模型,利用2019—2020年多时相Sentinel-2 MSI遥感影像,反演闽江下游悬浮物浓度,并分析其时空变化特征。结果表明:① b4/b3、(b6-b3)/(b6+b3)、(b4+b8)/b3、(1/b3-1/b4)×b5是MSI反演闽江下游TSM浓度的最佳波段组合反射率; ② 对比其他2种模型,基于超参数优化的CatBoost算法建立的悬浮物反演模型精度最高,其决定系数R²为0.95,均方根误差RMSE和平均绝对百分比误差MAPE分别为15.32 mg/L和19.68%; ③ 2019—2020年闽江下游悬浮物浓度分布“西低东高”,白沙至琅岐入海口呈升高趋势;④ 悬浮物浓度夏季最高,冬季和秋季次之,春季最低。本研究可为闽江下游悬浮物浓度监测及时空变化分析提供一种有效的技术手段和理论参考。
陈点点, 陈芸芝, 冯险峰, 武爽. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 2022, 24(4): 780-791.DOI:10.12082/dqxxkx.2022.210446
CHEN Diandian, CHEN Yunzhi, FENG Xianfeng, WU Shuang. Retrieving Suspended Matter Concentration in Rivers based on Hyperparameter Optimized CatBoost Algorithm[J]. Journal of Geo-information Science, 2022, 24(4): 780-791.DOI:10.12082/dqxxkx.2022.210446
表2
Sentinel MSI影像
季节 | 序号 | 日期 | 影像类型 |
---|---|---|---|
春 | 1 | 2019-03-20 | Sentinel-2A |
2 | 2020-04-08 | Sentinel-2B | |
3 | 2020-04-13 | Sentinel-2A | |
4 | 2020-04-18 | Sentinel-2B | |
夏 | 5 | 2020-06-12 | Sentinel-2A |
6 | 2020-07-22 | Sentinel-2A | |
7 | 2020-08-06 | Sentinel-2B | |
8 | 2020-08-26 | Sentinel-2B | |
秋 | 9 | 2019-11-05 | Sentinel-2A |
10 | 2019-11-10 | Sentinel-2B | |
11 | 2019-11-15 | Sentinel-2A | |
12 | 2020-10-10 | Sentinel-2A | |
冬 | 13 | 2019-01-24 | Sentinel-2B |
14 | 2019-01-29 | Sentinel-2A | |
15 | 2020-02-18 | Sentinel-2B | |
16 | 2020-02-23 | Sentinel-2A |
[1] |
Havens K E. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake[J]. Hydrobiologia, 2003,493(1-3):173-186.DOI: 10.1023/A:1025497621547
doi: 10.1023/A:1025497621547 |
[2] | 王书航, 姜霞, 王雯雯, 等. 蠡湖水体悬浮物的时空变化及其影响因素[J]. 中国环境科学, 2014,34(6):1548-1555. |
[ Wang S H, Jiang X, Wang W W, et al. Spatial-temporal dynamic changes of the water suspended matter and its influencing factors in Lihu Lake. China Environmental Science, 2014,34(6):1548-1555. ] DOI: 10.3969/j.issn.1000-6923.2014.06.025
doi: 10.3969/j.issn.1000-6923.2014.06.025 |
|
[3] |
Cao H Y, Han L, Li W, et al. Inversion and distribution of total suspended matter in water based on remote sensing images: A case study on Yuqiao Reservoir, China[J]. Water Environment Research, 2021,93(4):582-595. DOI: 10.1002/wer.1460
doi: 10.1002/wer.1460 |
[4] | 张运林, 秦伯强, 朱广伟, 等. 杭州西湖水体光学状况及影响因子分析[J]. 长江流域资源与环境, 2005(6):72-77. |
[ Zhang Y L, Qin B Q, Zhu G W, et al. The light condition and affect factors in Hangzhou west lake. Resources and Environment in the Yangtze Basin, 2005(6):72-77. ] DOI: 10.3969/j.issn.1004-8227.2005.06.015
doi: 10.3969/j.issn.1004-8227.2005.06.015 |
|
[5] |
Feng L, Hu C M, Chen X L, et al. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS[J]. Remote Sensing of Environment, 2014,140:779-788. DOI: 10.1016/j.rse.2013.10.002
doi: 10.1016/j.rse.2013.10.002 |
[6] |
Isabel C, Fran Ois S, Gabriel N. Evaluation of the first year of operational Sentinel-2A data for retrieval of suspended solids in medium- to high-turbidity waters[J]. Remote Sensing, 2018,10(7):982. DOI: 10.3390/rs10070982
doi: 10.3390/rs10070982 |
[7] |
Pahlevan N, Smith B, Schalles J, et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach[J]. Remote Sensing of Environment, 2020,240:111604. DOI: 10.1016/j.rse.2019.111604
doi: 10.1016/j.rse.2019.111604 |
[8] | 王行行, 王杰, 崔玉环. 基于Sentinel-2 MSI影像的河湖系统水体悬浮物空间分异遥感监测:以安徽省升金湖与连接长江段为例[J]. 环境科学, 2020,41(3):1207-1216. |
[ Wang H H, Wang J, Cui Y H. Remote sensing monitoring on spatial differentiation of suspended sediment concentration in a River-Lake system based on Sentinel-2 MSI imaging:A case for Shengjin Lake and connected Yangtze River section in Anhui province. Environmental Science, 2020,41(3):1207-1216. ] DOI: 10.13227/j.hjkx.201907164
doi: 10.13227/j.hjkx.201907164 |
|
[9] |
Shi K, Zhang Y L, Zhu G W, et al. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data[J]. Remote Sensing of Environment, 2015,164:43-56. DOI: 10.1016/j.rse.2015.02.029
doi: 10.1016/j.rse.2015.02.029 |
[10] | 孙宏亮, 何宏昌, 付波霖, 等. 香港近海海域叶绿素a定量反演及时空变化分析[J]. 中国环境科学, 2020,40(5):2222-2229. |
[ Sun H L, He H C, Fu B L, et al. Quantitative inversion and analysis of spatio-temporal changes of chlorophyll-a concentration in Hong Kong's coastal waters.[J]. China Environmental Science, 2020,40(5):2222-2229. ] DOI: 10.19674/j.cnki.issn1000-6923.2020.0254
doi: 10.19674/j.cnki.issn1000-6923.2020.0254 |
|
[11] |
Dorji P, Fearns P, Broomhall M, et al. A semi-analytic model for estimating total suspended sediment concentration in turbid coastal waters of Northern Western Australia using MODIS-Aqua 250m data[J]. Remote Sensing, 2016,8(7):556. DOI: 10.3390/rs8070556
doi: 10.3390/rs8070556 |
[12] | 李云梅, 黄家柱, 韦玉春, 等. 用分析模型方法反演水体叶绿素的浓度[J]. 遥感学报, 2006,10(2):169-175. |
[ Li Y M, Huang J Z, Wei Y C, et al. Inversing chlorophyll concentration of Taihu Lake by analytic model. Journal of Remote Sensing, 2006,10(2):169-175. ] DOI: 10.3321/j.issn:1007-4619.2006.02.004
doi: 10.3321/j.issn:1007-4619.2006.02.004 |
|
[13] |
Chebud Y, Naja G M, Rivero R G, et al. Water quality monitoring using remote sensing and an artificial neural network[J]. Water, Air, & Soil Pollution: Focus, 2012,23(8):4875-4887. DOI: 10.1007/s11270-012-1243-0
doi: 10.1007/s11270-012-1243-0 |
[14] | 刘忠华, 李云梅, 檀静, 等. 太湖、巢湖水体总悬浮物浓度半分析反演模型构建及其适用性评价[J]. 环境科学, 2012,33(9):3000-3008. |
[ Liu Z H, Li Y M, Tan J, et al. Construction of semi-analytical model for inversing total suspended matter in Lake Taihu and Chaohu and assessment of its applicability. Environmental Science, 2012,33(9):3000-3008. ] DOI: 10.13227/j.hjkx.2012.09.011
doi: 10.13227/j.hjkx.2012.09.011 |
|
[15] |
Chu Q, Zhang Y C, Ma R H, et al. MODIS-based remote estimation of absorption coefficients of an inland turbid lake in China[J]. Remote Sensing, 2020,12(12):1940. DOI: 10.3390/rs12121940
doi: 10.3390/rs12121940 |
[16] |
Blix K, Li J, Massicotte P, et al. Developing a new Machine-Learning algorithm for estimating Chlorophyll-a concentration in optically complex waters: A case study for high northern latitude waters by using Sentinel 3 OLCI[J]. Remote Sensing, 2019,11(18):2076. DOI: 10.3390/rs11182076
doi: 10.3390/rs11182076 |
[17] |
Balasubramanian S V, Pahlevan N, Smith B, et al. Robust algorithm for estimating Total Suspended Solids (TSS) in inland and nearshore coastal waters[J]. Remote Sensing of Environment, 2020,246:111768. DOI: 10.1016/j.rse.2020.111768
doi: 10.1016/j.rse.2020.111768 |
[18] | 朱云芳, 朱利, 李家国, 等. 基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演[J]. 环境科学学报, 2017,37(1):130-137. |
[ Zhu Y F, Zhu L, Li J G, et al. The study of inversion of chlorophyll a in Taihu based on GF-1 WFV image and BP neural network. Acta Scientiae Circumstantiae, 2017,37(1):130-137. ] DOI: 10.13671/j.hjkxxb.2016.0275
doi: 10.13671/j.hjkxxb.2016.0275 |
|
[19] | 烟贯发, 张雪萍, 王书玉, 等. 基于改进的PSO优化LSSVM参数的松花江哈尔滨段悬浮物的遥感反演[J]. 环境科学学报, 2014,34(8):2148-2156. |
[ Yan G F, Zhang X P, Wang S Y, et al. Remote-sensing retrieval of suspended solids based on improved PSO-LSSVM at the Harbin section of the Songhua River. Acta Scientiae Circumstantiae, 2014,34(8):2148-2156. ] DOI: 10.13671/j.hjkxxb.2014.0744
doi: 10.13671/j.hjkxxb.2014.0744 |
|
[20] |
Ana R, Martin H, Gonzalo M G, et al. Machine learning regression approaches for Colored Dissolved Organic Matter (CDOM) retrieval with S2-MSI and S3-OLCI simulated data[J]. Remote Sensing, 2018,10(5):786. DOI: 10.3390/rs10050786
doi: 10.3390/rs10050786 |
[21] | 卢雪梅, 苏华. 基于OLCI数据的福建近海悬浮物浓度遥感反演[J]. 环境科学学报, 2020,40(8):2819-2827. |
[ Lu X M, Su H. Retrieving total suspended matter concentration in Fujian coastal waters using OLCI data. Acta Scientiae Circumstantiae, 2020,40(8):2819-2827. ] DOI: 10.13671/j.hjkxxb.2020.0176
doi: 10.13671/j.hjkxxb.2020.0176 |
|
[22] | 方馨蕊, 温兆飞, 陈吉龙, 等. 随机森林回归模型的悬浮泥沙浓度遥感估算[J]. 遥感学报, 2019,23(4):756-772. |
[ Fang X R, Wen Z F, Chen J L, et al. Remote sensing estimation of suspended sediment concentration based on Random Forest Regression Model. Journal of Remote Sensing, 2019,23(4):756-772. ] DOI: 10.11834/jrs.20197498
doi: 10.11834/jrs.20197498 |
|
[23] |
Ding Y, Chen Z Q, Lu W F, et al. A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei[J]. Atmospheric Environment, 2021,249:118212. DOI: 10.1016/j.atmosenv.2021.118212
doi: 10.1016/j.atmosenv.2021.118212 |
[24] | 李东义, 陈坚, 王爱军, 等. 闽江河口洪季悬浮泥沙特征及输运过程[J]. 海洋工程, 2009,27(2):70-80. |
[ Li D Y, Chen J, Wang A J, et al. Suspended sediment characteristics and transport in the Minjiang estuary during flood seasons[J]. The Ocean Engineering, 2009,27(2):70-80. ] DOI: 10.16483/j.issn.1005-9865.2009.02.014
doi: 10.16483/j.issn.1005-9865.2009.02.014 |
|
[25] | 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004,8(1):37-44. |
[ Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ⅰ: Above-water method[J]. Journal of Remote Sensing, 2004,8(1):37-44. ] DOI: 10.3321/j.issn:1007-4619.2004.01.006
doi: 10.3321/j.issn:1007-4619.2004.01.006 |
|
[26] | 陈涛, 李武, 吴曙初. 悬浮泥沙浓度与光谱反射率峰值波长红移的相关关系[J]. 海洋学报(中文版), 1994(1):38-43. |
[ Chen T, Li W, Wu S C. Correlation between suspended sediment concentration and peak wavelength red shift of spectral reflectance. Acta Oceanolgica Sinica, 1994(1):38-43. ] DOI: CNKI:SUN:SEAC.0.1994-01-004
doi: CNKI:SUN:SEAC.0.1994-01-004 |
|
[27] |
Vanhellemont Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives[J]. Remote Sensing of Environment, 2019,225:175-192. DOI: 10.1016/j.rse.2019.03.010
doi: 10.1016/j.rse.2019.03.010 |
[28] |
Su H, Lu X M, Chen Z Q, et al. Estimating coastal Chlorophyll-A concentration from time-series OLCI data based on Machine Learning[J]. Remote Sensing, 2021,13(4):576. DOI: 10.3390/rs13040576
doi: 10.3390/rs13040576 |
[29] |
Saberioon M, Brom J, Nedbal V, et al. Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters[J]. Ecological Indicators, 2020,113:106236. DOI: 10.1016/j.ecolind.2020.106236
doi: 10.1016/j.ecolind.2020.106236 |
[30] |
Duan H T, Ma R H, Zhang Y Z, et al. Remote-sensing assessment of regional inland lake water clarity in northeast China[J]. Limnology, 2009,10(2):135. DOI: 10.1007/s10201-009-0263-y
doi: 10.1007/s10201-009-0263-y |
[31] | Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[J]. arXiv preprint arXiv:1706.09516, 2017. |
[32] |
Lee S, Vo T P, Thai H T, et al. Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm[J]. Engineering Structures, 2021,238(1):112109. DOI: 10.1016/j.engstruct.2021.112109
doi: 10.1016/j.engstruct.2021.112109 |
[33] |
Breiman L. Random Forests[J]. Machine Learning, 2001,45(1):5-32. DOI: 10.1023/A:1010933404324
doi: 10.1023/A:1010933404324 |
[34] | 温小乐, 徐涵秋. 福州城市扩展对闽江下游水质影响的遥感分析[J]. 地理科学, 2010,30(4):624-629. |
[ Wen X L, Xu H Q. Remote sensing analysis of impact of Fuzhou city expansion on water quality of lower Minjiang River, China. Scientia Geographica Sinica, 2010,30(4):624-629. ] DOI: 10.13249/j.cnki.sgs.2010.04.018
doi: 10.13249/j.cnki.sgs.2010.04.018 |
|
[35] |
Hou X, Feng L, Duan H, et al. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China[J]. Remote Sensing of Environment, 2017,190:107-121. DOI: 10.1016/j.rse.2016.12.006
doi: 10.1016/j.rse.2016.12.006 |
[36] | 龚松柏, 高爱国, 林建杰, 等. 闽江下游及河口悬浮物时空分布特征及其影响因素[J]. 地球科学与环境学报, 2017,39(6):826-836. |
[ Gong S B, Gao A G, Lin J J, et al. Temporal-spatial distribution and its influencing factors of suspended particulate matters in Minjiang lower reaches and estuary. Journal of Earth Sciences and Environment, 2017,39(6):826-836. ] DOI: 10.3969/j.issn.1672-6561.2017.06.012
doi: 10.3969/j.issn.1672-6561.2017.06.012 |
|
[37] | 刘大召, 付东洋, 沈春燕, 等. 河口及近岸二类水体悬浮泥沙遥感研究进展[J]. 海洋环境科学, 2010,29(4):611-616. |
[ Liu D Z, Fu D Y, Shen C Y, et al. Study advances on remote sensing of suspended sediment in estuaries and coastal case Ⅱ water. Marine Environmental Science, 2010,29(4):611-616. ] | |
[38] | 谢旭, 陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018,33(5):900-907. |
[ Xie X, Chen Y Z. Retrieval of total suspended matter in the lower of Minjiang River based on PSO-RBF. Remote Sensing Technology and Application, 2018,33(5):900-907. ] | |
[39] | 张兵, 李俊生, 申茜, 等. 长时序大范围内陆水体光学遥感研究进展[J]. 遥感学报, 2021,25(1):37-52. |
[ Zhang B, Li J S, Shen Q, et al. Recent research progress on long time series and large scale optical remote sensing of inland water. Journal of Remote Sensing, 2021,25(1):37-52. ] |
[1] | 林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953-966. |
[2] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[3] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[4] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[5] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[6] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[7] | 聂祥琴, 陈瀚阅, 牛铮, 张黎明, 刘炜, 邢世和, 范协裕, 李家国. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. |
[8] | 高位, 涂伟, 李明晓, 方碧宸, 陈栋胜, 黄正东, 贺彪. 基于影响因子动态更新的都市圈国土-人口协同模拟[J]. 地球信息科学学报, 2022, 24(8): 1502-1511. |
[9] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[10] | 郭逸飞, 吴田军, 骆剑承, 石含宁, 郜丽静. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7): 1406-1419. |
[11] | 高雪梅, 杨续超, 陈柏儒, 林琳. 基于随机森林模型的环渤海地区人口空间化模拟[J]. 地球信息科学学报, 2022, 24(6): 1150-1162. |
[12] | 卢奕帆, 梁颖然, 卢思言, 肖钺, 何小钰, 林锦耀. 结合“珞珈一号”夜间灯光与城市功能分区的广州市碳排放空间分布模拟及其影响因素分析[J]. 地球信息科学学报, 2022, 24(6): 1176-1188. |
[13] | 赵迪, 陈鹏, 李海成, 苗红斌. 2005—2018年北京市外来人口迁移特征与影响因素分析[J]. 地球信息科学学报, 2022, 24(4): 698-710. |
[14] | 于法川, 祝善友, 张桂欣, 朱佳恒, 张南, 徐永明. 复杂山区地形条件下ERA5再分析地表气温降尺度方法[J]. 地球信息科学学报, 2022, 24(4): 750-765. |
[15] | 黄钦, 杨波, 徐新创, 郝汉舟, 梁莉莉, 王敏. 基于多源空间数据和随机森林模型的长沙市茶颜悦色门店选址与预测研究[J]. 地球信息科学学报, 2022, 24(4): 723-737. |
|