地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (4): 597-616.doi: 10.12082/dqxxkx.2022.210512
• 综述 • 下一篇
收稿日期:
2021-08-26
修回日期:
2021-09-23
出版日期:
2022-04-25
发布日期:
2022-06-25
通讯作者:
*杜世宏(1975— ),男,甘肃靖远人,研究员,主要从事时空数据智能理解方法研究。E-mail: smilegis@163.com作者简介:
舒 弥(1994— ),男,湖北汉川人,博士,主要从事遥感影像智能解译、深度学习算法研究。E-mail: shumimi@pku.edu.cn
基金资助:
SHU Mi1,2(), DU Shihong1,2,*(
)
Received:
2021-08-26
Revised:
2021-09-23
Online:
2022-04-25
Published:
2022-06-25
Contact:
DU Shihong
Supported by:
摘要:
运用遥感技术进行土地资源调查,摸清其数量及分布状况,长期以来都是遥感领域研究的重要内容。本文首先回顾了过去40年来遥感技术在我国国土调查中的应用情况,然后围绕高分辨率影像的特征提取、大范围影像的样本获取、多时相/多传感器影像的迁移学习以及多源异构数据融合4个方面介绍了相关进展情况;接着归纳总结了现有遥感信息提取技术在国土调查中面临的4个挑战:① 高分辨率影像分类存在如何定义、选择、挖掘高级特征的问题;② 国土调查中的遥感数据集规模庞大,存在着类间不平衡和类内多样性,为这种复杂数据集获取足够、均衡、多样化的样本集是一个巨大挑战;③ 对于多传感器/多时相影像,如何低成本、及时地实现土地利用分类是值得考虑的问题;④ 从土地覆盖到土地利用存在语义鸿沟,如何合适地引入语义信息以弥合语义鸿沟需要被考虑。最后,本文对国土调查遥感技术的未来发展方向和应用点进行了展望。
舒弥, 杜世宏. 国土调查遥感40年进展与挑战[J]. 地球信息科学学报, 2022, 24(4): 597-616.DOI:10.12082/dqxxkx.2022.210512
SHU Mi, DU Shihong. Forty Years' Progress and Challenges of Remote Sensing in National Land Survey[J]. Journal of Geo-information Science, 2022, 24(4): 597-616.DOI:10.12082/dqxxkx.2022.210512
表2
大范围土地覆盖数据集
数据集名称 | 数据源 | 数据集年份 | 空间分辨率 |
---|---|---|---|
IGBP GLCC | AVHRR | 1992 | 0.25°、0.5°、1° |
UMD LCC | AVHRR | 1981—1994 | 1 km、8 km、100 km |
IGBP LC | MODIS | 2000 | 0.25°、0.5°、1° |
MODIS LCT | MODIS | 2001—2013 | 1 km |
GLC2000 | SPOT-4 | 2000 | 1 km |
GLC30 | Landsat系列 | 2000, 2010, 2020 | 30 m |
全球30m精细地表覆盖产品 | Landsat8 | 2015 | 30 m |
FROM-GLC | Landsat 5/7/8、高分系列、资源卫星、环境卫星 | 2015, 2017 | 10 m,30 m |
[1] | 国务院第三次全国国土调查领导小组办公室. 第三次全国国土调查内业信息提取工作手册[EB/OL].http://www.mnr.gov.cn/zt/td/dscqggtdc/zl/201906/t20190604_2439983.html, 2019-06-04. |
[ The office for the third national land survey of the State Council. Information extraction manual for the third national land survey[EB/OL]. http://www.mnr.gov.cn/zt/td/dscqggtdc/zl/201906/t20190604_2439983.html, 2019-06-04.] | |
[2] | 贺涌源, 戴磊. 测绘科学与技术在自然资源调查监测中的应用——以第三次国土调查为例[J]. 浙江国土资源, 2019,5:42-44. |
[ He Y Y, Dai L. Application of surveying and mapping science and technology in natural resources survey and monitoring: Taking the third national land survey as an example[J]. Zhejiang Land & Resources, 2019,5:42-44. ] DOI: CNKI:SUN:ZJDZ.0.2019-05-021
doi: CNKI:SUN:ZJDZ.0.2019-05-021 |
|
[3] | 何颖. 基于遥感技术的内业信息提取在第三次国土调查中的应用[D]. 长春:吉林大学, 2019. |
[ He Y. The application of remote sensing-based information extraction in the third land survey[D]. Changchun: Jilin University, 2019. ] | |
[4] |
周岩, 董金玮. 陆表水体遥感监测研究进展[J]. 地球信息科学学报, 2019,21(11):1768-1778.
doi: 10.12082/dqxxkx.2019.190518 |
[ Zhou Y, Dong J W. Review on monitoring open surface water body using remote sensing[J]. Journal of Geo-information Science, 2019,21(11):1768-1778. DOI: 10.12082/dqxxkx.2019.190518
doi: 10.12082/dqxxkx.2019.190518 |
|
[5] |
董金玮, 吴文斌, 黄健熙, 等. 农业土地利用遥感信息提取的研究进展与展望[J]. 地球信息科学学报, 2020,22(4):772-783.
doi: 10.12082/dqxxkx.2020.200192 |
[ Dong J W, Wu W B, Huang J X, et al. State of the art and perspective of agricultural land use remote sensing information extraction[J]. Journal of Geo-information Science, 2020,22(4):772-783. DOI: 10.12082/dqxxkx.2020.200192
doi: 10.12082/dqxxkx.2020.200192 |
|
[6] | 李建平, 张柏, 张泠, 等. 湿地遥感监测研究现状与展望[J]. 地理科学进展, 2007,26(1):33-43. |
[ Li J P, Zhang B, Zhang L, et al. Research status and prospects of wetland remote sensing monitoring[J]. Progress in Geography, 2007,26(1):33-43. DOI: 10.3969/j.issn.1007-6301.2007.01.004
doi: 10.3969/j.issn.1007-6301.2007.01.004 |
|
[7] |
张树文, 颜凤芹, 于灵雪, 等. 湿地遥感研究进展[J]. 地理科学, 2013,33(11):1406-1412.
doi: 10.13249/j.cnki.sgs.2013.011.1406 |
[ Zhang S W, Yan F Q, Yu L X, et al. Research progress of wetland remote sensing. Scientia Geographica Sinica, 2013,33(11):1406-1412. ] DOI: CNKI:SUN:DLKX.0.2013-11-018
doi: CNKI:SUN:DLKX.0.2013-11-018 |
|
[8] | 朱明, 李加明, 许泉立, 等. 1949-1999年中国国土调查科学技术发展研究[J]. 昆明理工大学学报(自然科学版), 2019,44(4):40-47. |
[ Zhu M, Li J M, Xu Q L, et al. Research on the development of science and technology in China's land survey from 1949 to 1999[J]. Journal of Kunming University of Science and Technology(Social Sciences Edition), 2019,44(4):40-47. ] DOI: CNKI:SUN:KMLG.0.2019-04-008
doi: CNKI:SUN:KMLG.0.2019-04-008 |
|
[9] | 仇大海. 3S技术在第二次全国土地调查中的应用[D]. 北京:中国地质大学(北京), 2008. |
[ Qiu D H. Application of 3S technology in the second national land survey[D]. Beijing: China University of Geosciences(Beijing), 2008. ] DOI: CNKI:CDMD:2.2008.068234
doi: CNKI:CDMD:2.2008.068234 |
|
[10] | 马平华, 刘永宏. 浅谈遥感技术在第二次土地调查中的应用[J]. 中国科技信息, 2010,17:51-52. |
[ Ma P H, Liu Y H. Application of remote sensing technology in the second land survey[J]. China Science and Technology Information, 2010,17:51-52. ] DOI: 10.3969/j.issn.1001-8972.2010.17.019
doi: 10.3969/j.issn.1001-8972.2010.17.019 |
|
[11] | 张增祥, 汪潇, 温庆可, 等. 土地资源遥感应用研究进展[J]. 遥感学报, 2016,20(5):1243-1258. |
[ Zhang Z X, Wang X, Wen Q K, et al. Progress on the remote sensing application of land resources[J]. Journal of Remote Sensing, 2016,20(5):1243-1258. ] DOI: 10.11834/jrs.20166149
doi: 10.11834/jrs.20166149 |
|
[12] | 李伯衡. 利用卫片制图进行全国土地利用现状概查的基本方法和进展[J]. 中国农业资源与区划, 1983,1:77-83. |
[ Li B H. Basic methods and progress of national land use survey using satellite mapping[J]. Chinese Journal of Agricultural Resources and Regional Planning, 1983,1:77-83. ] DOI: 10.7621/cjarrp.1005-9121.19830108
doi: 10.7621/cjarrp.1005-9121.19830108 |
|
[13] | 刘常娟. 面向对象分类方法在土地调查中的可行性研究[D]. 长沙:中南大学, 2009. |
[ Liu C J. Feasibility study of object-oriented classification method in land survey[D]. Changsha: Central South University, 2009. ] DOI: 10.7666/d.y1325692
doi: 10.7666/d.y1325692 |
|
[14] | 国土资源部. 第二次全国土地调查:卫星遥感影像覆盖国土[EB/OL].http://www.mnr.gov.cn/dt/zb/2013/edcg/, 2013-12-30. |
[The Ministry of Land and Resources. The second national land survey: Satellite remote sensing images cover the country[EB/OL]. http://www.mnr.gov.cn/dt/zb/2013/edcg/, 2013-12-30.] | |
[15] | 国务院第三次全国国土调查领导小组办公室. 第三次全国国土调查实施方案[EB/OL].http://gi.mnr.gov.cn/201811/t20181120_2367135.html, 2018-11-19. |
[ Office for the third national land survey of the State Council. Implementation plan for the third national land survey[EB/OL]. http://gi.mnr.gov.cn/201811/t20181120_2367135.html, 2018-11-19.] | |
[16] | 高平. 国土资源卫星遥感应用与发展[J]. 卫星应用, 2016,7:27-29. |
[ Gao P. Application and development of satellite remote sensing for land and resources[J]. Satellite Application, 2016,7:27-29. ] DOI: CNKI:SUN:WXYG.0.2016-07-012
doi: CNKI:SUN:WXYG.0.2016-07-012 |
|
[17] | 孙禧勇, 苗菁, 王锦, 等. 高分遥感影像在第三次全国国土调查中的应用潜力评价——以重庆市为例[J]. 河南科学, 2018,36(11):98-108. |
[ Sun X Y, Miao J, Wang J, et al. Evaluation of the application potentiality of high-resolution remote sensing images in the third national land survey: A case study of Chongqing[J]. Henan Science, 2018,36(11):98-108. ] DOI: 10.3969/j.issn.1004-3918.2018.11.015
doi: 10.3969/j.issn.1004-3918.2018.11.015 |
|
[18] | 张颢骞. 高分遥感影像在第三次全国国土调查中的应用价值分析[J]. 建材与装饰, 2019(32):241-242. |
[ Zhang H Q. Analysis of the application value of high-resolution remote sensing images in the third national land survey[J]. Construction Materials & Decoration, 2019(32):241-242. ] DOI: CNKI:SUN:JCYS.0.2019-32-180
doi: CNKI:SUN:JCYS.0.2019-32-180 |
|
[19] | 宋玉今. 卫星遥感技术在国土资源调查中的应用[J]. 现代商业, 2010,36:61-61. |
[ Song Y J. Application of satellite remote sensing technology in land resources survey[J]. Modern Business, 2010,36:61-61. ] DOI: CNKI:SUN:XDBY.0.2010-36-039
doi: CNKI:SUN:XDBY.0.2010-36-039 |
|
[20] | 吴凤敏, 胡艳, 陈静, 等. 自然资源调查监测的历史、现状与未来[J]. 测绘与空间地理信息, 2019,42(10):42-44. |
[ Wu F M, Hu Y, Chen J, et al. The history, current situation and future of natural resources survey and monitoring[J]. Geomatics & Spatial Information Technology, 2019,42(10):42-44. ] DOI: CNKI:SUN:DBCH.0.2019-10-013
doi: CNKI:SUN:DBCH.0.2019-10-013 |
|
[21] |
Loveland T, Brown D, Ohlen B, et al. ISLSCP II IGBP DISCover and SiB Land Cover, 1992-1993[J]. ORNL DAAC, 2009. DOI: 10.3334/ORNLDAAC/930
doi: 10.3334/ORNLDAAC/930 |
[22] | Hansen M, DeFries R, Townshend J R G, et al. Land cover classification derived from AVHRR[J]. College Park, Maryland: The Global Land Cover Facility, 1998. |
[23] |
Friedl M A, Strahler A H, Hodges J. ISLSCP II MOIDS (Collection 4) IGBP Land Cover, 2000-2001[J]. ORNL DAAC, 2010. DOI: 10.3334/ORNLDAAC/968
doi: 10.3334/ORNLDAAC/968 |
[24] |
Chen J, Chen J, Liao A, et al. Global land cover mapping at 30 m resolution: A POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015(103):7-27. DOI: 10.1016/j.isprsjprs.2014.09.002
doi: 10.1016/j.isprsjprs.2014.09.002 |
[25] |
Gong P, Liu H, Zhang M, et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019,64(6):370-373. DOI: 10.1016/j.scib.2019.03.002
doi: 10.1016/j.scib.2019.03.002 |
[26] | 马霭乃. 遥感目视解译的基本理论与方法[J]. 遥感信息, 1987(3):28-31. |
[ Ma A N. Basic theory and method of remote sensing visual interpretation[J]. Remote Sensing Information, 1987(3):28-31. ] DOI: CNKI:SUN:YGXX.0.1987-03-012
doi: CNKI:SUN:YGXX.0.1987-03-012 |
|
[27] | 杨军义. 遥感影像目视解译在第二次全国土地调查中的应用[J]. 甘肃科技, 2011,27(9):74-76. |
[ Yang J Y. Application of visual interpretation of remote sensing image in the second national land survey[J]. Gansu Science and Technology, 2011,27(9):74-76. ] | |
[28] | 杨毅柠, 宋微. 国土调查中的遥感目视解译与矢量化方法研究[J]. 环境保护与循环经济, 2009,29(10):20-23. |
[ Yang Y N, Song W. Research on remote sensing visual interpretation and vectorization in land survey[J]. Environmental Protection and Circular Economy, 2009,29(10):20-23. ] DOI: CNKI:SUN:LNCX.0.2009-10-010
doi: CNKI:SUN:LNCX.0.2009-10-010 |
|
[29] | 吴笛, 吴满意. 青海省第二次全国土地调查中遥感影像目视解译的研究[J]. 科技信息, 2010(7):38-39. |
[ Wu D, Wu M Y. Study on visual interpretation of remote sensing images in the second national land survey of Qinghai Province[J]. Science & Technology Information, 2010(7):38-39. ] | |
[30] | 蔡秀梅, 万发贯. 遥感数据计算机分类在土地调查中的应用[J]. 华中理工大学学报, 1990,18(5):139-146. |
[ Cai X M, Wan F G. Application of computer classification of remote sensing data in land survey[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 1990,18(5):139-146. ] DOI: CNKI:SUN:HZLG.0.1990-05-028
doi: CNKI:SUN:HZLG.0.1990-05-028 |
|
[31] | 陈玲. 土地利用更新调查中遥感图像分类的方法和精度对比的研究[D]. 太原:太原理工大学, 2010. |
[ Chen L. Research on the method and accuracy comparison of remote sensing image classification in land use update survey[D]. Taiyuan: Taiyuan University of Technology, 2010. ] DOI: 10.7666/d.d083012
doi: 10.7666/d.d083012 |
|
[32] | 李恒利. 土地利用调查与动态监测的遥感方法研究[D]. 太原:太原理工大学, 2007. |
[ Li H L. Research on remote sensing method for land use survey and dynamic monitoring[D]. Taiyuan: Taiyuan University of Technology, 2007. ] DOI: 10.7666/d.y1202337
doi: 10.7666/d.y1202337 |
|
[33] | 陈晓宁, 叶满珠. 第二次土地调查计算机解译探讨[J]. 北京测绘, 2011(2):12-16. |
[ Chen X N, Ye M Z. The computer interpretation of the second land survey[J]. Beijing Surveying and Mapping, 2011(2):12-16. ] DOI: 10.3969/j.issn.1007-3000.2011.02.004
doi: 10.3969/j.issn.1007-3000.2011.02.004 |
|
[34] | 张秀英, 杨敏华, 刘常娟, 等. 面向对象遥感分类新技术在第二次土地调查中的应用[J]. 遥感信息, 2008(3):77-80. |
[ Zhang X, Yang M H, Liu C J, et al. Application of new object-oriented remote sensing classification technology in the second land survey[J]. Remote Sensing Information, 2008(3):77-80. ] DOI: 10.3969/j.issn.1000-3177.2008.03.016
doi: 10.3969/j.issn.1000-3177.2008.03.016 |
|
[35] | 徐健, 陈向阳, 张海霞, 等. 面向对象分类方法在全国第二次土地调查中的应用[J]. 测绘技术装备, 2009,11(2):32-32. |
[ Xu J, Chen X Y, Zhang H X, et al. Application of object-oriented classification method in the second national land survey[J]. Geomatics Technology and Equipment, 2009,11(2):32-32. ] | |
[36] |
Jain A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010,31(8):651-666. DOI: 10.1016/j.patrec.2009.09.011
doi: 10.1016/j.patrec.2009.09.011 |
[37] | 李石华, 王金亮, 毕艳, 等. 遥感图像分类方法研究综述[J]. 国土资源遥感, 2005,2:1-6. |
[ Li S H, Wang J L, Bi Y, et al. A review on classification methods of remote sensing images[J]. Remote Sensing For Land & Resources, 2005,2:1-6. ] DOI: 10.3969/j.issn.1001-070X.2005.02.001
doi: 10.3969/j.issn.1001-070X.2005.02.001 |
|
[38] | 曹宝, 秦其明, 马海建, 等. 面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例[J]. 地理与地理信息科学, 2006,22(2):46-49. |
[ Cao B, Qin Q M, Ma H J, et al. Application of object-oriented method in SPOT5 remote sensing image classification: A case study of Haidian District, Beijing[J]. Geography and Geo-information Science, 2006,22(2):46-49. ] DOI: 10.3969/j.issn.1672-0504.2006.02.012
doi: 10.3969/j.issn.1672-0504.2006.02.012 |
|
[39] | Hay G J, Blaschke T. Geographic object-based image analysis (GEOBIA)[J]. Photogrammetric Engineering & Remote Sensing, 2010,76(2):121-122. |
[40] |
Zhang L, Zhang L, Du B. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016,4(2):22-40. DOI: 10.1109/MGRS.2016.2540798
doi: 10.1109/MGRS.2016.2540798 |
[41] | 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报·信息科学版, 2018,43(12):1788-1796. |
[ Gong J Y. Development opportunities and challenges of surveying and mapping and remote sensing technology in the era of artificial intelligence. Geomatics and Information Science of Wuhan University, 2018,43(12):1788-1796. ] DOI: CNKI:SUN:WHCH.0.2018-12-005
doi: CNKI:SUN:WHCH.0.2018-12-005 |
|
[42] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015,521(7553):436. DOI: 10.1038/nature14539
doi: 10.1038/nature14539 |
[43] |
Han W, Feng R, Wang L, et al. A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,145:23-43. DOI: 10.1016/j.isprsjprs.2017.11.004
doi: 10.1016/j.isprsjprs.2017.11.004 |
[44] |
Huang X, Weng C, Lu Q, et al. Automatic labelling and selection of training samples for high-resolution remote sensing image classification over urban areas[J]. Remote Sensing, 2015,7:16024-16044. DOI: 10.3390/rs71215819
doi: 10.3390/rs71215819 |
[45] |
Li W, Hsu C Y. Automated terrain feature identification from remote sensing imagery: A deep learning approach[J]. International Journal of Geographical Information Science, 2020,34(4):637-660. DOI: 10.1080/13658816.2018.1542697
doi: 10.1080/13658816.2018.1542697 |
[46] |
Niyogi P, Girosi F, Poggio T. Incorporating prior information in machine learning by creating virtual examples[J]. Proceedings of the IEEE, 1998,86(11):2196-2209. DOI: 10.1109/5.726787
doi: 10.1109/5.726787 |
[47] | Elkan C. The foundations of cost-sensitive learning[C]. International Joint Conference on Artificial Intelligence, 2001. |
[48] |
Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55:119-139. DOI: 10.1006/jcss.1997.1504
doi: 10.1006/jcss.1997.1504 |
[49] | Tax D. One-class classification[D]. Delft University of Technology, Delft, Netherlands, 2001. |
[50] |
Hong X, Chen S, Harris C J. A kernel-based two-class classifier for unbalanced data sets[J]. IEEE Transactions on Neural Networks, 2007,18(1):28-41. DOI: 10.1109/TNN.2006.882812
doi: 10.1109/TNN.2006.882812 pmid: 17278459 |
[51] |
Japkowicz N, Stephen S. The class imbalance problem: A systematic study[J]. Intelligent Data Analysis, 2002,6(5):429-449. DOI: 10.3233/ida-2002-6504
doi: 10.3233/ida-2002-6504 |
[52] |
Jain A, Zongker D. Feature selection: Evaluation, application, and small sample performance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(2):153-158. DOI: 10.1109/34.574797
doi: 10.1109/34.574797 |
[53] | Guyon I, Elisseef A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003,3:1157-1182. |
[54] |
Maldonado S, Weber R, Famili F. Feature selection for high-dimensional class-unbalanced data sets using Support Vector Machines[J]. Information Sciences, 2014,286:228-246. DOI: 10.1016/j.ins.2014.07.015
doi: 10.1016/j.ins.2014.07.015 |
[55] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16:321-357. DOI: 10.1613/jair.953
doi: 10.1613/jair.953 |
[56] |
Chawla N V, Lazarevic A, Hall L O, et al. SMOTEBoost: Improving prediction of the minority class in boosting[C]. European Conference on Principles of Data Mining and Knowledge Discovery, Heidelberg, Berlin, 2003. DOI: 10.1007/978-3-540-39804-2_12
doi: 10.1007/978-3-540-39804-2_12 |
[57] |
Douzas G, Bacao F. Effective data generation for unbalanced learning using conditional generative adversarial networks[J]. Expert Systems with Applications, 2018,91:464-471. DOI: 10.1016/j.eswa.2017.09.030
doi: 10.1016/j.eswa.2017.09.030 |
[58] |
Wang S, Yao X. Diversity analysis on imbalanced data sets by using ensemble models[C]. IEEE Symposium on Computational Intelligence and Data Mining, 2009. DOI: 10.1109/CIDM.2009.4938667
doi: 10.1109/CIDM.2009.4938667 |
[59] |
Jo T, Japkowicz N. Class imbalances versus small disjuncts[J]. ACM SIGKDD Explorations Newsletter, 2004,6(1):40-49. DOI: 10.1145/1007730.1007737
doi: 10.1145/1007730.1007737 |
[60] |
Chen F, Chen J, Wu H, et al. A landscape shape index-based sampling approach for land cover accuracy assessment[J]. Science China Earth Sciences, 2016,59:2263-2274. DOI: 10.1007/s11430-015-5280-5
doi: 10.1007/s11430-015-5280-5 |
[61] |
Huang H, Wang J, Liu C, et al. The migration of training samples towards dynamic global land cover mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,161:27-36. DOI: 10.1016/j.isprsjprs.2020.01.010
doi: 10.1016/j.isprsjprs.2020.01.010 |
[62] | 吴田军, 骆剑承, 夏列钢, 等. 迁移学习支持下的遥感影像对象级分类样本自动选择方法[J]. 测绘学报, 2014,43(9):908-916. |
[ Wu T J, Luo J C, Xia L G, et al. Automatic sample selection method for object-level classification of remote sensing images supported by transfer learning[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(9):908-916. ] DOI: 10.13485/j.cnki.11-2089.2014.0163
doi: 10.13485/j.cnki.11-2089.2014.0163 |
|
[63] |
Li X, Zhang L, Du B, Zhang L, et al. Iterative reweighting heterogeneous transfer learning framework for supervised remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(5):2022-2035. DOI: 10.1109/JSTARS.2016.2646138
doi: 10.1109/JSTARS.2016.2646138 |
[64] |
Tuia D, Pasolli E, Emery W. Using active learning to adapt remote sensing image classifiers[J]. Remote Sensing of Environment, 2011,115(9):2232-2242. DOI: 10.1016/j.rse.2011.04.022
doi: 10.1016/j.rse.2011.04.022 |
[65] |
Demir B, Bovolo F, Bruzzone L. Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013,51(1):300-312. DOI: 10.1109/TGRS.2012.2195727
doi: 10.1109/TGRS.2012.2195727 |
[66] |
Matasci G, Volpi M, Kanevski M, et al. Semisupervised transfer component analysis for domain adaptation in remote sensing image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015,53(7):3550-3564. DOI: 10.1109/TGRS.2014.2377785
doi: 10.1109/TGRS.2014.2377785 |
[67] |
Banerjee B, Bovolo F, Bhattacharya A, et al. A novel graph-matching-based approach for domain adaptation in classification of remote sensing image pair[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015,53(7):4045-4062. DOI: 10.1109/TGRS.2015.2389520
doi: 10.1109/TGRS.2015.2389520 |
[68] |
Shi Q, Du B, Zhang L. Domain adaptation for remote sensing image classification: A low-rank reconstruction and instance weighting label propagation inspired algorithm[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015,53(10):5677-5689. DOI: 10.1109/TGRS.2015.2427791
doi: 10.1109/TGRS.2015.2427791 |
[69] |
Bruzzone L, Diego F P. Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2001,39(2):456-460. DOI: 10.1109/36.905255
doi: 10.1109/36.905255 |
[70] |
Bruzzone L, Marconcini M. Domain adaptation problems: A DASVM classification technique and a circular validation strategy[J]. IEEE Transactions on Software Engineering, 2010,32(5):770-787. DOI: 10.1109/TPAMI.2009.57
doi: 10.1109/TPAMI.2009.57 |
[71] |
Sun Z, Wang C, Wang H, et al. Learn multiple-kernel SVMs for domain adaptation in hyperspectral data[J]. IEEE Geoscience and Remote Sensing Letters, 2013,10(5),1224-1228. DOI: 10.1109/LGRS.2012.2236818
doi: 10.1109/LGRS.2012.2236818 |
[72] |
Bahirat K. A novel domain adaptation bayesian classifier for updating land-cover maps with class differences in source and target domains[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012,50(7):2810-2826. DOI: 10.1109/TGRS.2011.2174154
doi: 10.1109/TGRS.2011.2174154 |
[73] |
Persello C, Bruzzone L. Active learning for domain adaptation in the supervised classification of remote sensing images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012,50(11):4468-4483. DOI: 10.1109/TGRS.2012.2192740
doi: 10.1109/TGRS.2012.2192740 |
[74] |
Bruzzone L, Marconcini M. Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009,47(4):1108-1122. DOI: 10.1109/TGRS.2008.2007741
doi: 10.1109/TGRS.2008.2007741 |
[75] |
Liu Y, Li X. Domain adaptation for land use classification: A spatio-temporal knowledge reusing method[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,98:133-144. DOI: 10.1016/j.isprsjprs.2014.09.013
doi: 10.1016/j.isprsjprs.2014.09.013 |
[76] |
Elshamli A, Taylor G W, Berg A, et al. Domain adaptation using representation learning for the classification of remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017,10(9):4198-4209. DOI: 10.1109/JSTARS.2017.2711360
doi: 10.1109/JSTARS.2017.2711360 |
[77] |
Tuia D, Munoz-Mari J, Gomez-Chova L, et al. Graph matching for adaptation in remote sensing[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013,51(1):329-341. DOI: 10.1109/TGRS.2012.2200045
doi: 10.1109/TGRS.2012.2200045 |
[78] |
Bruzzone L, Diego F P. A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images[J]. Pattern Recognition Letters, 2002,23(9):1063-1071. DOI: 10.1016/S0167-8655(02)00053-3
doi: 10.1016/S0167-8655(02)00053-3 |
[79] |
Penatti O, Nogueira K, Santos, J. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition Workshops, 2015. DOI: 10.1109/cvprw.2015.7301382
doi: 10.1109/cvprw.2015.7301382 |
[80] | 许夙晖, 慕晓冬, 张雄美, 等. 结合对抗网络与辅助任务的遥感影像无监督域适应方法[J]. 测绘学报, 2017,46(12):1969-1977. |
[ Xu S H, Mu X D, Zhang X M, et al. Unsupervised domain adaptation method of remote sensing images combined with adversarial network and auxiliary tasks[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(12):1969-1977. ] DOI: 10.11947/j.AGCS.2017.20170291
doi: 10.11947/j.AGCS.2017.20170291 |
|
[81] |
Dong J, Zhuang D, Huang Y, et al. Advances in multi-sensor data fusion: Algorithms and applications[J]. Sensors, 2009,9(10):7771-7784. DOI: 10.3390/s91007771
doi: 10.3390/s91007771 |
[82] |
Zhang J. Multi-source remote sensing data fusion: status and trends[J]. International Journal of Image and Data Fusion, 2010,1(1):5-24. DOI: 10.1080/19479830903561035
doi: 10.1080/19479830903561035 |
[83] |
Dalla Mura M, Prasad S, Pacifici F, et al. Challenges and opportunities of multimodality and data fusion in remote sensing[J]. Proceedings of the IEEE, 2015,103(9):1585-1601. DOI: 10.1109/JPROC.2015.2462751
doi: 10.1109/JPROC.2015.2462751 |
[84] |
Schmitt M, Zhu X X. Data fusion and remote sensing: An ever-growing relationship[J]. IEEE Geoscience and Remote Sensing Magazine, 2016,4(4):6-23. DOI: 10.1109/MGRS.2016.2561021
doi: 10.1109/MGRS.2016.2561021 |
[85] |
Joshi N, Baumann M, Ehammer A, et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring[J]. Remote Sensing, 2016,8(1):70. DOI: 10.3390/rs8010070
doi: 10.3390/rs8010070 |
[86] |
Shi Y, Qi Z, Liu X, et al. Urban land use and land cover classification using multisource remote sensing images and social media data[J]. Remote Sensing, 2019,11(22):2719. DOI: 10.3390/rs11222719
doi: 10.3390/rs11222719 |
[87] |
Liu Y, Liu X, Gao S, et al. Social sensing: A new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015,105(3):512-530. DOI: 10.1080/00045608.2015.1018773
doi: 10.1080/00045608.2015.1018773 |
[88] |
Cao R, Zhu J, Tu W, et al. Integrating aerial and street view images for urban land use classification[J]. Remote Sensing, 2018,10(10):1553. DOI: 10.3390/rs10101553
doi: 10.3390/rs10101553 |
[89] |
Qin Y, Chi M, Liu X, et al. Classification of high resolution urban remote sensing images using deep networks by integration of social media photos[C]. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. 2018:7243-7246. DOI: 10.1109/IGARSS.2018.
doi: 10.1109/IGARSS.2018 |
8518538 | |
[90] |
Zhang Y, Li Q, Huang H, et al. The combined use of remote sensing and social sensing data in fine-grained urban land use mapping: A case study in Beijing, China[J]. Remote Sensing, 2017,9(9):865. DOI: 10.3390/rs9090865
doi: 10.3390/rs9090865 |
[91] |
Andrade R, Alves A, Bento C. POI mining for land use classification: A case study[J]. ISPRS International Journal of Geo-Information, 2020,9(9):493. DOI: 10.3390/ijgi9090493
doi: 10.3390/ijgi9090493 |
[92] |
Jia Y, Ge Y, Ling F, et al. Urban land use mapping by combining remote sensing imagery and mobile phone positioning data[J]. Remote Sensing, 2018,10(3):446. DOI: 10.3390/rs10030446
doi: 10.3390/rs10030446 |
[93] |
Anugraha A S, Chu H J. Land use classification from combined use of remote sensing and social sensing data[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2018,42(4). DOI: 10.5194/isprs-archives-XLII-4-33-2018
doi: 10.5194/isprs-archives-XLII-4-33-2018 |
[94] |
Li W. Mapping urban land use by combining multi-source social sensing data and remote sensing images[J]. Earth Science Informatics, 2021:1-9. DOI: 10.1007/s12145-021-00624-3
doi: 10.1007/s12145-021-00624-3 |
[95] |
Liu X, He J, Yao Y, et al. Classifying urban land use by integrating remote sensing and social media data[J]. International Journal of Geographical Information Science, 2017,31(8):1675-1696. DOI: 10.1080/13658816.2017.1324976
doi: 10.1080/13658816.2017.1324976 |
[96] |
Huang Z, Qi H, Kang C, et al. An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data[J]. Remote Sensing, 2020,12(19):3254. DOI: 10.3390/rs12193254
doi: 10.3390/rs12193254 |
[97] |
Yin J, Dong J, Hamm N A S, et al. Integrating remote sensing and geospatial big data for urban land use mapping: A review[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,103:102514. DOI: 10.1016/j.jag.2021.102514
doi: 10.1016/j.jag.2021.102514 |
[98] |
Wang H, Skau E, Krim H, et al. Fusing heterogeneous data: A case for remote sensing and social media[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(12):6956-6968. DOI: 10.1109/TGRS.2018.2846199
doi: 10.1109/TGRS.2018.2846199 |
[99] |
Li J, Benediktsson J A, Zhang B, et al. Spatial technology and social media in remote sensing: A survey[J]. Proceedings of the IEEE, 2017,105(10):1855-1864. DOI: 10.1109/JPROC.2017.2729890
doi: 10.1109/JPROC.2017.2729890 |
[100] |
Qi L, Li J, Wang Y, et al. Urban observation: Integration of remote sensing and social media data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(11):4252-4264. DOI: 10.1109/JSTARS.2019.2908515
doi: 10.1109/JSTARS.2019.2908515 |
[101] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110. DOI: 10.1023/B:VISI.0000029664.99615.94
doi: 10.1023/B:VISI.0000029664.99615.94 |
[102] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection [C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. DOI: 10.1109/CVPR.2005.177
doi: 10.1109/CVPR.2005.177 |
[103] |
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002,24(7):971-987. DOI: 10.1109/tpami.2002.1017623
doi: 10.1109/tpami.2002.1017623 |
[104] |
Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining & Knowledge Discovery, 1998,2(2):121-167. DOI: 10.1023/A:1009715923555
doi: 10.1023/A:1009715923555 |
[105] | 明冬萍, 骆剑承, 周成虎, 等. 高分辨率遥感影像信息提取及块状基元特征提取[J]. 数据采集与处理, 2005,20(1):34-39. |
[ Ming D P, Luo J C, Zhou C H, et al. Information extraction and block primitive feature extraction of high-resolution remote sensing images[J]. Journal of Data Acquisition & Processing, 2005,20(1):34-39. ] DOI: CNKI:SUN:SJCJ.0.2005-01-006
doi: CNKI:SUN:SJCJ.0.2005-01-006 |
|
[106] |
Van Niel T G, McVicar T R, Datt B. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification[J]. Remote Sensing of Environment, 2005,98(4):468-480. DOI: 10.1016/j.rse.2005.08.011
doi: 10.1016/j.rse.2005.08.011 |
[107] |
Shahshahani B M, Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE Transactions on Geoscience & Remote Sensing, 1994,32(5):1087-1095. DOI: 10.1109/36.312897
doi: 10.1109/36.312897 |
[108] |
Weiss G M, Provost F. Learning when training data are costly: The effect of class distribution on tree induction[J]. Journal of Artificial Intelligence Research, 2003,19:315-354. DOI: 10.1613/jair.1199
doi: 10.1613/jair.1199 |
[109] |
Chawla N V, Japkowicz N, Kotcz A. Special issue on learning from unbalanced data sets[J]. ACM SIGKDD Explorations Newsletter, 2004,6:1-6. DOI: 10.1145/1007730.1007733
doi: 10.1145/1007730.1007733 |
[110] |
刘纪远, 张增祥, 张树文, 等. 中国土地利用变化遥感研究的回顾与展望——基于陈述彭学术思想的引领[J]. 地球信息科学学报, 2020,22(4):680-687.
doi: 10.12082/dqxxkx.2020.200052 |
[ Liu J Y, Zhang Z X, Zhang S W, et al. Innovation and development of remote sensing-based land use change studies based on Shupeng Chen's academic thoughts[J]. Journal of Geo-information Science, 2020,22(4):680-687. DOI: 10.12082/dqxxkx.2020.200052.
doi: 10.12082/dqxxkx.2020.200052 |
|
[111] |
Liu L, Zhang X, Gao Y, et al. Finer-resolution mapping of global land cover: Recent developments, consistency analysis, and prospects[J]. Journal of Remote Sensing, 2021,11(12):14. DOI: 10.34133/2021/5289697
doi: 10.34133/2021/5289697 |
[112] |
Mora B, Tsendbazar N E, Herold M, et al. Global land cover mapping: Current status and future trends[M]. Land Use and Land Cover Mapping in Europe. Springer, Dordrecht, 2014:11-30. DOI: 978-94-007-7968-6
doi: 978-94-007-7968-6 |
[113] |
Li H, Dou X, Tao C, et al. RSI-CB: A large scale remote sensing image classification benchmark via crowdsource data[J]. arXiv preprint arXiv: 1705.10450, 2017. DOI: 10.3390/s20061594
doi: 10.3390/s20061594 |
[114] |
Bayas JCL, Lesiv M, Waldner F, et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform[J]. Scientific Data, 2017,4(1):1-10. DOI: 10.1038/sdata.2017.136
doi: 10.1038/sdata.2017.136 |
[115] |
Fritz S, McCallum I, Schill C, et al. Geo-Wiki: An online platform for improving global land cover[J]. Environmental Modelling & Software, 2012,31:110-123. DOI: 10.1016/j.envsoft.2011.11.015
doi: 10.1016/j.envsoft.2011.11.015 |
[1] | 林禹, 赵泉华, 李玉. 一种基于深度传递迁移学习的遥感影像分类方法[J]. 地球信息科学学报, 2022, 24(3): 495-507. |
[2] | 刘戈, 姜小光, 唐伯惠. 特征优选与卷积神经网络在农作物精细分类中的应用研究[J]. 地球信息科学学报, 2021, 23(6): 1071-1081. |
[3] | 施海霞, 韦玉春, 徐晗泽宇, 周爽, 程琪. 高分遥感图像相对辐射校正中的伪不变地物自动提取和优化选择[J]. 地球信息科学学报, 2021, 23(5): 903-917. |
[4] | 王海起, 孔浩然, 李学伟. 基于过滤文本和社交网络的用户常驻位置预测[J]. 地球信息科学学报, 2021, 23(10): 1778-1786. |
[5] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[6] | 郭子慧, 刘伟. 深度学习和遥感影像支持的矢量图斑地类解译真实性检查方法[J]. 地球信息科学学报, 2020, 22(10): 2051-2061. |
[7] | 何昭欣, 张淼, 吴炳方, 邢强. Google Earth Engine支持下的江苏省夏收作物遥感提取[J]. 地球信息科学学报, 2019, 21(5): 752-766. |
[8] | 张沁雨,李哲,夏朝宗,陈健,彭道黎. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10): 1619-1628. |
[9] | 程熙, 吴炜, 夏列钢, 罗瑞, 沈占锋. 集成夜间灯光数据与Landsat TM影像的不透水面自动提取方法研究[J]. 地球信息科学学报, 2017, 19(10): 1364-1374. |
[10] | 程希萌, 沈占锋, 邢廷炎, 夏列钢, 吴田军. 基于mRMR特征优选算法的多光谱遥感影像分类效率精度分析[J]. 地球信息科学学报, 2016, 18(6): 815-823. |
[11] | 李霞, 徐涵秋, 李晶, 郭燕滨. 基于NDSI和NDISI指数的SPOT-5影像裸土信息提取[J]. 地球信息科学学报, 2016, 18(1): 117-123. |
[12] | 郭燕滨, 徐涵秋, 张灿, 林思乡. 闽南金三角地区城市扩展及其驱动分析——以漳州市主城区为例[J]. 地球信息科学学报, 2015, 17(8): 927-936. |
[13] | 汪小钦, 石义方, 魏兰, 吴波. 福州海岸带湿地分类与变化的遥感分析[J]. 地球信息科学学报, 2014, 16(5): 838-833. |
[14] | 邹亚荣, 邹斌, 梁超, 崔松雪, 曾韬. 多元指标的海上溢油信息提取[J]. 地球信息科学学报, 2012, 14(2): 265-269. |
[15] | 夏叡, 李云梅, 王桥, 王彦飞, 金鑫, 徐恩惠. 无锡市城市扩张与热岛响应的遥感分析[J]. 地球信息科学学报, 2009, 11(5): 677-683. |
|