地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (5): 925-939.doi: 10.12082/dqxxkx.2022.210529

• 遥感科学与应用技术 • 上一篇    下一篇

一种星载平台轻量化快速影像匹配方法

岳振宇(), 范大昭, 董杨, 纪松*(), 李东子   

  1. 中国人民解放军战略支援部队信息工程大学 地理空间信息学院,郑州 450001
  • 收稿日期:2021-09-01 修回日期:2021-10-18 出版日期:2022-05-25 发布日期:2022-07-25
  • 通讯作者: * 纪 松(1983— ),男,江苏盐城人,博士,副教授,主要从事航天摄影测量及遥感影像处理与分析的研究。 E-mail: jisong_chxy@163.com
  • 作者简介:岳振宇(1997— ),男,山东德州人,硕士生,主要从事数字摄影测量研究。E-mail: 2015301610373@whu.edu.cn
  • 基金资助:
    高分遥感测绘应用示范系统(二期)(42-Y30B04-9001-19/21);国家自然科学基金项目(41971427)

A Generation Method of Spaceborne Lightweight and Fast Matching

YUE Zhenyu(), FAN Dazhao, DONG Yang, JI Song*(), LI Dongzi   

  1. Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
  • Received:2021-09-01 Revised:2021-10-18 Online:2022-05-25 Published:2022-07-25
  • Supported by:
    High Resolution Remote Sensing, Surveying and Mapping Application Demonstration System(42-Y30B04-9001-19/21);National Natural Science Foundation of China(41971427)

摘要:

针对现有传统影像匹配在星载平台有限的存储及算力条件下难以快速计算的问题,本文提出一种适用于星载平台的、基于哈希学习的轻量化快速影像匹配方法。该方法以同源卫星影像的特征描述符作为训练集计算哈希函数,并利用训练好的哈希函数将特征点的浮点型特征描述符映射至汉明空间,实现特征点对间相似度的快速计算,进一步通过剔除误匹配点获得精确匹配结果。同时,训练集中的特征描述符的种类可根据星载平台载荷的传感器类型、影像分辨率及目标区域影像的地貌类型进行灵活选择,使得本文方法具备良好的可重构性;计算汉明距离衡量特征点对间的相似度,提高本文方法在星载平台轻量化处理的应用能力。选取不同时刻资源三号卫星影像及高分七号卫星影像进行匹配对比实验,本文方法轻量化处理后的LW-SIFT方法相较于经典SIFT方法,在耗时方面减少50.12%,且增加正确匹配点数达20.28%。实验结果表明,本文方法能够显著提升影像匹配的精确度及时效性,有较大的应用潜力,能够为星载平台应用提供有力支撑。

关键词: 星载平台快速匹配, 高空间分辨率遥感影像, 高分七号, 资源三号, 影像特征, 描述符轻量化, 哈希映射, 二值型特征描述符

Abstract:

To solve the existing problem that traditional matching methods are difficult to achieve fast matching on the spaceborne platform under the condition of limited storage and computing power. So, this paper proposes a fast image matching algorithm based on spaceborne platform. The feature descriptors of the same-origin satellite images are used as the training set to calculate the hash function, and the floating-point feature descriptors are mapped to the Hamming space to calculate the similarity. The mismatching elimination method is used to get a set of matching points with higher matching accuracy. And the types of feature descriptors can be flexibly adjusted according to the sensor type of the spaceborne platform load, image resolution, and landform type of the target area image, which makes the proposed method have good reconfigurability. The hamming distance is calculated to measure the similarity between feature point pairs and improve the application ability of the method in the light-weight processing of the spaceborne platform. The matching experiments of different geomorphological features using the different orbital imageries from ZY-3 and GF-7 satellites are completed. The experiments prove that compared with the SIFT, the LW-SIFT (Light Weight Scale-Invariant Feature Transform) proposed in the paper can achieve satellite remote sensing image matching more efficiently, reducing time consumption by 50.12% and increasing the number of correct matching points by 20.28 %. This proposed method can significantly improve the accuracy and timeliness of matching and has a large application potential for spaceborne platform applications.

Key words: fast matching on the spaceborne platform, high-resolution satellite images, GF-7 satellite, ZY-3 satellite, image feature, lightweight descriptors, hash algorithm, binary feature descriptors