地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (10): 1982-1992.doi: 10.12082/dqxxkx.2022.210601
收稿日期:
2021-10-03
修回日期:
2021-12-01
出版日期:
2022-10-25
发布日期:
2022-12-25
通讯作者:
*康朝贵(1986— ),男,湖南衡阳人,教授,主要从事城市信息学研究。E-mail: kangchaogui@cug.edu.cn作者简介:
甄卓(1996— ),男,辽宁朝阳人,硕士研究生,主要从事地理可视分析研究。E-mail: lazzyzhen@whu.edu.cn
基金资助:
ZHEN Zhuo1(), KANG Chaogui1,2,*(
)
Received:
2021-10-03
Revised:
2021-12-01
Online:
2022-10-25
Published:
2022-12-25
Supported by:
摘要:
研究城市功能子区域的动态演变特征可以帮助人们理解城市发展规律和进行城市规划,然而对这种动态性进行分析的手段一直以来较为匮乏。城市出行大数据的出现虽然提供了刻画和分析功能子区及其动态的工具,但是在方法层面仍缺乏克服长时期出行数据内在时空随机性的方案。本研究尝试从长时间段人口稳定流动的层面来分析城市内部是否存在具有完备功能的子区域。将具有完备功能的子区域定义为城市结构中内部流量显著高于外部连通流量且相对稳定的子区域的集合,并利用多年份的出租车轨迹数据来构建城市居民出行网络,进而利用网络分析中的社团发现算法来探测城市的完备功能子区域及其随时间的动态变化。为了实现这一目标,本研究提出了一种针对时序轨迹数据的时空耦合网络模型,尝试克服多年份出租车出行数据中潜在的时空随机性(如:时空突变),并在此模型的基础上提出了一种基于多层网络社团发现算法的城市完备功能子区动态探测手段,实现对城市完备功能子区域时空演变的追踪分析。最后,以北京市2012—2017年的出租车轨迹数据为例,使用该方法实现了北京市城区完备功能子区的动态探测,进而揭示了4类不同完备功能子区域的特征与发展态势。
甄卓, 康朝贵. 从多年份出租车出行分布数据中探测城市完备功能子区域的方法研究[J]. 地球信息科学学报, 2022, 24(10): 1982-1992.DOI:10.12082/dqxxkx.2022.210601
ZHEN Zhuo, KANG Chaogui. Delineating Urban Subdistricts with Comprehensive Functions from Taxi Trajectory Data in Multiple Years[J]. Journal of Geo-information Science, 2022, 24(10): 1982-1992.DOI:10.12082/dqxxkx.2022.210601
表1
2012—2017年出租车出行轨迹数据概况
年份 | 原始轨迹数/条 | 出租车数/辆 | 筛选后轨迹数/条 | 平均出行时间/s | 平均出行距离/m |
---|---|---|---|---|---|
2012 | 2 059 066 | 9 030 | 1 716 325 | 861.5 | 7259.3 |
2013 | 1 990 625 | 28 272 | 1 684 826 | 1160.4 | 6197.4 |
2014 | 1 506 303 | - | 1 234 329 | 1256.8 | 6756.6 |
2015 | 2 811 254 | 33 043 | 2 155 565 | 1081.3 | 6239.4 |
2016 | 2 166 601 | 29 966 | 1 945 297 | 1186.1 | 6270.6 |
2017 | 1 845 424 | 29 627 | 1 660 466 | 1190.9 | 6665.7 |
[1] |
Stanback T M. The new suburbanization: Challenge to the central city[M]. Routledge, 2019. DOI: 10.4324/9780429 313172
doi: 10.4324/9780429 |
[2] | 龙瀛, 刘伦伦. 新数据环境下定量城市研究的四个变革[J]. 国际城市规划, 2017, 32(1):64-73. |
[ Long Y, Liu L. Four transformations of Chinese quantitative urban research in the new data environment[J]. Urban Planning International, 2017, 32(1):64-73. ] DOI: 10.22217/upi.201 5.299
doi: 10.22217/upi.201 |
|
[3] |
Liu Y, Liu X, Gao S, et al. Social sensing: A new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015, 105(3):512-530. DOI: 10.1080/00045608.2015.1018773
doi: 10.1080/00045608.2015.1018773 |
[4] |
Fodor J A. The modularity of mind[M]. MIT press, 1983. DOI: 10.2307/2184717
doi: 10.2307/2184717 |
[5] |
Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences, 2008, 105(4):1118-1123. DOI: 10.1073/pnas.0706851105
doi: 10.1073/pnas.0706851105 |
[6] |
Rosvall M, Bergstrom C T. Maps of information flow reveal community structure in complex networks[J]. arXiv preprint, 2007,arXiv:0707.0609. DOI: 10.1007/978-3-642-31821-4
doi: 10.1007/978-3-642-31821-4 |
[7] |
Gao C, Ma Z, Zhang A Y, et al. Achieving optimal misclassification proportion in stochastic block models[J]. The Journal of Machine Learning Research, 2017, 18(1):1980-2024. DOI: 10.5555/3122009.3153016
doi: 10.5555/3122009.3153016 |
[8] |
Xie J, Kelley S, Szymanski B K. Overlapping community detection in networks: The state-of-the-art and comparative study[J]. ACM Computing Surveys, 2013, 45(4):1-35. DOI: 10.1145/2501654.2501657
doi: 10.1145/2501654.2501657 |
[9] |
Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure in complex networks[J]. New Journal of Physics, 2009, 11(3):033015. DOI: 10.1088/1367-2630/11/3/033015
doi: 10.1088/1367-2630/11/3/033015 |
[10] |
Evans T S, Lambiotte R. Line graphs, link partitions, and overlapping communities[J]. Physical Review E, 2009, 80(1):016105. DOI: 10.1103/PhysRevE.80.016105
doi: 10.1103/PhysRevE.80.016105 |
[11] |
Yang J, Leskovec J. Overlapping community detection at scale: a nonnegative matrix factorization approach[C]// Proceedings of the Sixth ACM International conference on Web Search and Data Mining. ACM, 2013:587-596. DOI: 10.1145/2433396.2433471
doi: 10.1145/2433396.2433471 |
[12] |
Lambiotte R, Delvenne J C, Barahona M. Laplacian dynamics and multiscale modular structure in networks[J]. arXiv preprint, 2008,arXiv:0812.1770. DOI: 10.1109/TNS E.2015.2391998
doi: 10.1109/TNS E.2015.2391998 |
[13] |
De Bacco C, Power E A, Larremore D B, et al. Community detection, link prediction, and layer interdependence in multilayer networks[J]. Physical Review E, 2017, 95(4):042317. DOI: 10.1103/PhysRevE.95.042317
doi: 10.1103/PhysRevE.95.042317 |
[14] |
De Domenico M, Lancichinetti A, Arenas A, et al. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems[J]. Physical Review X, 2015, 5(1):011027. DOI: 10.1103/phy srevx.5.011027
doi: 10.1103/phy srevx.5.011027 |
[15] |
Hmimida M, Kanawati R. Community detection in multiplex networks: A seed-centric approach[J]. Networks & Heterogeneous Media, 2015, 10(1):71-85. DOI: 10.3934/n hm.2015.10.71
doi: 10.3934/n hm.2015.10.71 |
[16] | Kuncheva Z, Montana G. Community detection in multiplex networks using locally adaptive random walks[C]// Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. ACM, 2015:1308-1315. DOI:10.1145/280879 7.2808852 |
[17] |
Long Y, Shen Z. Finding public transportation community structure based on large-scale smart card records in Beijing[M]//Geospatial Analysis to Support Urban Planning in Beijing. Springer, Cham, 2015:155-167. DOI: 10.1007/978-3-319-19342-7_8
doi: 10.1007/978-3-319-19342-7_8 |
[18] |
Li J, Zheng P, Zhang W. Identifying the spatial distribution of public transportation trips by node and community characteristics[J]. Transportation Planning and Technology, 2020, 43(3):325-340. DOI: 10.1080/03081060.2020.1 735776
doi: 10.1080/03081060.2020.1 735776 |
[19] |
王波, 甄峰, 张浩. 基于签到数据的城市活动时空间动态变化及区划研究[J]. 地理科学, 2015, 35(2):151-160.
doi: 10.13249/j.cnki.sgs.2015.02.151 |
[ Wang B, Zhen F, Zhang H. The dynamic changes of urban space-time activity and activity zoning based on check-in data in Sina web[J]. Scientia Geographica Sinica, 2015, 35(2):151-160. DOI: 10.13249/j.cnki.sgs.2015.02.151
doi: 10.13249/j.cnki.sgs.2015.02.151 |
|
[20] | 钮心毅, 丁亮, 宋小冬. 基于手机数据识别上海中心城的城市空间结构[J]. 城市规划学刊, 2014(6):61-67. |
[ Niu X, Ding L, Song X. Understanding urban spatial structure of Shanghai central city based on mobile phone data[J]. Urban Planning Forum, 2014(6):61-67. DOI: 10.3969/j.is sn.1000-3363.2014.06.009
doi: 10.3969/j.is sn.1000-3363.2014.06.009 |
|
[21] |
Tu W, Cao J, Yue Y, et al. Coupling mobile phone and social media data: A new approach to understanding urban functions and diurnal patterns[J]. International Journal of Geographical Information Science, 2017, 31(12):2331-2358. DOI: 10.1080/13658816.2017.1356464
doi: 10.1080/13658816.2017.1356464 |
[22] |
Yin J, Soliman A, Yin D, et al. Depicting urban boundaries from a mobility network of spatial interactions: A case study of Great Britain with geo-located Twitter data[J]. International Journal of Geographical Information Science, 2017, 31(7):1293-1313. DOI: 10.1080/13658816.2017.12 82615
doi: 10.1080/13658816.2017.12 82615 |
[23] |
宋辞, 裴韬. 北京市多尺度中心特征识别与群聚模式发现[J]. 地球信息科学学报, 2019, 21(3):384-397.
doi: 10.12082/dqxxkx.2019.180608 |
[ Song C, Pei T. Exploring polycentric characteristic and residential cluster patterns of urban city from big data[J]. Journal of Geo-information Science, 2019, 21(3):384-397. DOI: 10.1 2082/dqxxkx.2019.180608
doi: 10.1 2082/dqxxkx.2019.180608 |
|
[24] |
Liu X, Gong L, Gong Y, et al. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43:78-90. DOI: 10.1016/j.jtrangeo. 2015.01.016
doi: 10.1016/j.jtrangeo. 2015.01.016 |
[25] |
Guo D, Jin H, Gao P, et al. Detecting spatial community structure in movements[J]. International Journal of Geographical Information Science, 2018, 32(7):1326-1347. DOI: 10.1080/13658816.2018.1434889
doi: 10.1080/13658816.2018.1434889 |
[26] |
Zhou M, Yue Y, Li Q, et al. Portraying temporal dynamics of urban spatial divisions with mobile phone positioning data: A complex network approach[J]. ISPRS International Journal of Geo-Information, 2016, 5(12):240. DOI: 10.3390/ijgi5120240
doi: 10.3390/ijgi5120240 |
[27] |
Zhong C, Arisona S M, Huang X, et al. Detecting the dynamics of urban structure through spatial network analysis[J]. International Journal of Geographical Information Science, 2014, 28(11):2178-2199. DOI:10.1080/136588 16.2014.914521
doi: 10.1080/13658816.2014.914521 |
[28] |
Koylu C, Guo D, Kasakoff A, et al. Mapping family connectedness across space and time[J]. Cartography and Geographic Information Science, 2014, 41(1):14-26. DOI: 10.1080/15230406.2013.865303
doi: 10.1080/15230406.2013.865303 |
[29] |
Winterton R H S. Newton's law of cooling[J]. Contemporary Physics, 1999, 40(3):205-212. DOI: doi.org/10.1080/001075199181549
doi: doi.org/10.1080/001075199181549 |
[30] |
Bavaud F. Models for spatial weights: A systematic look[J]. Geographical Analysis, 1998, 30(2):153-171. DOI: 1 0.1111/j.1538-4632.1998.tb00394.x
doi: 1 0.1111/j.1538-4632.1998.tb00394.x |
[1] | 廖周伟, 关燕宁, 郭杉, 蔡丹路, 于敏, 姚武韬, 张春燕, 邓锐. 基于网格的街区尺度城市绿度度量方法[J]. 地球信息科学学报, 2022, 24(8): 1475-1487. |
[2] | 赵桐, 李泽峰, 宋柳依, 熊美成, 廖一兰, 裴韬. 基于微博大数据的北京市流动人口情绪与职住分布的关系研究[J]. 地球信息科学学报, 2022, 24(10): 1898-1910. |
[3] | 李慧香, 潘云, 宫辉力, 孙颖. 机器学习方法在预测泉水潜在出露位置中的应用[J]. 地球信息科学学报, 2021, 23(6): 1028-1039. |
[4] | 赵韶雅, 杨星斗, 戴特奇, 张超. 基于刷卡数据的公共汽车客流网络复杂性日内变化研究[J]. 地球信息科学学报, 2020, 22(6): 1254-1267. |
[5] | 王姣娥, 杜方叶, 靳海涛, 刘瑜. 基于交通出行链的就医活动识别理论框架与方法体系[J]. 地球信息科学学报, 2020, 22(4): 805-815. |
[6] | 孙杰, 毛智慧, 王乐, 邓磊. 居住区典型地物热环境的日变化及其相互影响分析[J]. 地球信息科学学报, 2020, 22(2): 279-289. |
[7] | 林金煌, 陈文惠, 张岸. 2019年北京市PM2.5人群暴露剂量特征分析[J]. 地球信息科学学报, 2020, 22(12): 2348-2357. |
[8] | 崔晓临, 张佳蓓, 吴锋, 张倩, 吴尧慧. 基于多源数据融合的北京市人口时空动态分析[J]. 地球信息科学学报, 2020, 22(11): 2199-2211. |
[9] | 杨土士, 王伟文, 常鸣, 王雪梅. 北京市潜在风道的数值模拟与综合识别[J]. 地球信息科学学报, 2020, 22(10): 1996-2009. |
[10] | 王楠, 杜云艳, 易嘉伟, 刘张, 王会蒙. 基于手机信令数据的北京市空间品质时空动态分析[J]. 地球信息科学学报, 2019, 21(1): 86-96. |
[11] | 陈泽东, 谯博文, 张晶. 基于居民出行特征的北京城市功能区识别与空间交互研究[J]. 地球信息科学学报, 2018, 20(3): 291-301. |
[12] | 胡曾曾, 赵志龙, 张贵祥. 非首都功能疏解背景下北京市人口空间分布形态模拟[J]. 地球信息科学学报, 2018, 20(2): 205-216. |
[13] | 刘菊, 许珺, 蔡玲, 孟斌, 裴韬. 基于出租车用户出行的功能区识别[J]. 地球信息科学学报, 2018, 20(11): 1550-1561. |
[14] | 齐建超, 刘慧平, 高啸峰. 基于自组织映射法的时间序列土地利用变化的时空可视化[J]. 地球信息科学学报, 2017, 19(6): 792-799. |
[15] | 林晓娟, 房世峰, 杜加强, 吴骅, 窦馨逸, 岳杙筱. 基于综合承载力的北京市适度人口研究[J]. 地球信息科学学报, 2017, 19(11): 1495-1503. |
|