[1] |
高添, 于立忠, 于丰源, 等. 中国科学院清原森林生态系统观测研究站塔群平台的功能和应用[J]. 应用生态学报, 2020, 31(3):695-705.
|
|
[ Gao T A, Yu L Z, Yu F Y, et al. Functions and applications of multi-tower platform of Qingyuan forest ecosystem research station of Chinese academy of sciences[J]. Chinese Journal of Applied Ecology, 2020, 31(3):695-705. ] DOI: 10.13287/j.1001-9332.202003.040
doi: 10.13287/j.1001-9332.202003.040
|
[2] |
Fukumoto R, Borlongan I A, Nishihara G N, et al. Effect of photosynthetically active radiation and temperature on the photosynjournal of two heteromorphic life history stages of a temperate edible brown alga, Cladosiphon umezakii (Chordariaceae, Ectocarpales), from Japan[J]. Journal of Applied Phycology, 2019, 31(2):1259-1270. DOI: 10.1007/s10811-018-1655-3
doi: 10.1007/s10811-018-1655-3
|
[3] |
李朝晖, 张永光, 张乾, 等. 植被冠层日光诱导叶绿素荧光塔基自动观测方法及系统介绍[J]. 遥感学报, 2021, 25(5):1152-1168.
|
|
[ Li Z H, Zhang Y G, Zhang Q A, et al. Tower-based automatic observation methods and systems of solar-induced chlorophyll fluorescence in vegetation canopy[J]. National Remote Sensing Bulletin, 2021, 25(5):1152-1168. ] DOI: 10.11834/jrs.20210254
doi: 10.11834/jrs.20210254
|
[4] |
Paul-Limoges E, Damm A, Hueni A, et al. Effect of environmental conditions on Sun-induced fluorescence in a mixed forest and a cropland[J]. Remote Sensing of Environment, 2018, 219:310-323. DOI: 10.1016/j.rse.2018.10.018
doi: 10.1016/j.rse.2018.10.018
|
[5] |
Xi Y, Jianwu T, John F, et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynjournal on diurnal and seasonal scales in a temperate deciduous forest[J]. Geophysical Research Letters, 2015, 42(8):2977-2987. DOI: 10.1002/2015GL063201
doi: 10.1002/2015GL063201
|
[6] |
de Moura Y M, Galvão L S, Hilker T, et al. Spectral analysis of Amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:52-64. DOI: 10.1016/j.isprsjprs.2017.07.006
doi: 10.1016/j.isprsjprs.2017.07.006
|
[7] |
Wu J, Albert L P, Lopes A P, et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests[J]. Science, 2016, 351(6276):972-976. DOI: 10.1126/science.aad5068
doi: 10.1126/science.aad5068
|
[8] |
Lopes A P, Nelson B W, Wu J, et al. Leaf flush drives dry season green-up of the Central Amazon[J]. Remote Sensing of Environment, 2016, 182:90-98. DOI: 10.1016/j.rse.2016.05.009
doi: 10.1016/j.rse.2016.05.009
|
[9] |
Richardson A D, Anderson R S, Arain M A, et al. Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synjournal[J]. Global Change Biology, 2012, 18(2):566-584. DOI: 10.1111/j.1365-2486.2011.02562.x
doi: 10.1111/j.1365-2486.2011.02562.x
|
[10] |
Hilker T, Leeuwen M, Coops N C, et al. Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand[J]. Trees, 2010, 24(5):819-832. DOI: 10.1007/s00468-010-0452-7
doi: 10.1007/s00468-010-0452-7
|
[11] |
Tortini R, Hilker T, Coops N C, et al. Technological advancement in tower-based canopy reflectance monitoring: The AMSPEC-III system[J]. Sensors (Basel, Switzerland), 2015, 15(12):32020-32030. DOI: 10.3390/s151229906
doi: 10.3390/s151229906
|
[12] |
Eklundh L, Jin H X, Schubert P, et al. An optical sensor network for vegetation phenology monitoring and satellite data calibration[J]. Sensors (Basel, Switzerland), 2011, 11(8):7678-7709. DOI: 10.3390/s110807678
doi: 10.3390/s110807678
|
[13] |
郭健, 刘良云, 刘新杰, 等. 基于查找表的塔基平台O2-A波段大气校正方法研究[J]. 遥感技术与应用, 2019, 34(3):467-475.
|
|
[ Guo J A, Liu L Y, Liu X J, et al. An O2-A band atmospheric correction algorithm for tower-based platform based on look-up table[J]. Remote Sensing Technology and Application, 2019, 34(3):467-475. ] DOI: 10.11873/j.issn.1004-0323.2019.3.0467
doi: 10.11873/j.issn.1004-0323.2019.3.0467
|
[14] |
冯笑雨. 基于塔基监控图像的建设施工用地识别与空间定位方法研究[D]. 南京:南京师范大学, 2019.
|
|
[ Feng X Y. Research on recognition and spatial location method of construction land based on tower-based monitoring image[D]. Nanjing: Nanjing Normal University, 2019. ] DOI: 10.27245/d.cnki.gnjsu.2019.000671
doi: 10.27245/d.cnki.gnjsu.2019.000671
|
[15] |
方陆明, 柴红玲, 唐丽华, 等. 基于DEM的视频可视域提取算法[J]. 北京林业大学学报, 2010, 32(3):27-32.
|
|
[ Fang L M, Chai H L, Tang L H, et al. An extraction algorithm of a DEM based video visualization domain[J]. Journal of Beijing Forestry University, 2010, 32(3):27-32. ] DOI: 10.13332/j.1000-1522.2010.03.033
doi: 10.13332/j.1000-1522.2010.03.033
|
[16] |
Yaagoubi R, Yarmani M, Kamel A, et al. HybVOR: A voronoi-based 3D GIS approach for camera surveillance network placement[J]. ISPRS International Journal of Geo-Information, 2015, 4(2):754-782. DOI: 10.3390/ijgi4020754
doi: 10.3390/ijgi4020754
|
[17] |
Wang M Z, Liu X J, Zhang Y N, et al. Camera coverage estimation based on multistage grid subdivision[J]. ISPRS International Journal of Geo-Information, 2017, 6(4):110. DOI: 10.3390/ijgi6040110
doi: 10.3390/ijgi6040110
|
[18] |
Yao Y, Chen C H, Abidi B, et al. Sensor planning for automated and persistent object tracking with multiple cameras[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008:1-8. DOI: 10.1109/CVPR.2008.4587515
doi: 10.1109/CVPR.2008.4587515
|
[19] |
Malik R, Bajcsy P. Automated placement of multiple stereo cameras[C]. The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras OMNIVIS, Marseille, France, 2008.
|
[20] |
Ahamed T, Tian L, Jiang Y S, et al. Tower remote-sensing system for monitoring energy crops; image acquisition and geometric corrections[J]. Biosystems Engineering, 2012, 112(2):93-107. DOI: 10.1016/j.biosysteseng.2012.03.003
doi: 10.1016/j.biosysteseng.2012.03.003
|
[21] |
明冬萍, 王群, 杨建宇. 遥感影像空间尺度特性与最佳空间分辨率选择[J]. 遥感学报, 2008, 12(4):529-537.
|
|
[ Ming D P, Wang Q, Yang J Y. Spatial scale of remote sensing image and selection of optimal spatial resolution[J]. Journal of Remote Sensing, 2008, 12(4):529-537. ]
|
[22] |
Chen H, Pontius R G. Sensitivity of a land change model to pixel resolution and precision of the independent variable[J]. Environmental Modeling & Assessment, 2011, 16(1):37-52. DOI: 10.1007/s10666-010-9233-3
doi: 10.1007/s10666-010-9233-3
|
[23] |
Markham B, Townshend J R G. Land cover classification accuracy as a function of sensor spatial resolution[C]. Proceedings 15th international symponsium on remote sensing of environment, Ann Arbor, Michigan, 1981.
|
[24] |
Li F Q, Kustas W P, Anderson M C, et al. Effect of remote sensing spatial resolution on interpreting tower-based flux observations[J]. Remote Sensing of Environment, 2008, 112(2):337-349. DOI: 10.1016/j.rse.2006.11.032
doi: 10.1016/j.rse.2006.11.032
|
[25] |
Waldner F, Defourny P. Where can pixel counting area estimates meet user-defined accuracy requirements?[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 60:1-10. DOI: 10.1016/j.jag.2017.03.014
doi: 10.1016/j.jag.2017.03.014
|