地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (1): 189-200.doi: 10.12082/dqxxkx.2022.210669
• 遥感科学与应用技术 • 上一篇
收稿日期:
2021-10-25
修回日期:
2021-11-12
出版日期:
2022-01-25
发布日期:
2022-03-25
通讯作者:
* 徐涵秋(1955— ),男,江苏盐城人,教授,主要从事环境遥感应用研究。E-mail: hxu@fzu.edu.cn作者简介:
林中立(1989— ),男,福建福州人,博士,讲师,主要从事城市环境遥感、城乡规划技术与科学研究。E-mail: linzl@fjut.edu.cn
基金资助:
LIN Zhongli1(), XU Hanqiu2,3,*(
)
Received:
2021-10-25
Revised:
2021-11-12
Online:
2022-01-25
Published:
2022-03-25
Contact:
XU Hanqiu
Supported by:
摘要:
局地气候分区体系(LCZ)能够有效建立城市气候与空间形态间的定量关系,揭示城市内部热环境分异特征,是当前备受关注的城市热环境研究方法。本文以我国新晋“火炉城市”福州的主城区为研究区,使用2019年9月22日过空的Landsat-8影像,对基于LCZ的热环境空间分布特征与LCZ类间/类内差异进行分析,并就福州城市热环境的改善提出规划建议。研究表明:① 福州主城区以密集的中、低层连片建筑为主,并呈集聚式分布;② LCZ各类间存在明显的地表温度差异,大型低层建筑(LCZ 8)的温度最高,达41.56 ℃,密集低层建筑(LCZ 3)和工业厂房(LCZ 10)次之,分别为40.90 ℃和40.39 ℃,而茂密树木(LCZ A)和水体(LCZ G)的温度最低,均值为29.94 ℃;③ 根据福州城市发展的时空特征,将主城区分为二环区与三环区进行LCZ类内温度差异的比较分析,可以发现主城区内的主要LCZ建筑类别存在0.5~1.5 ℃的类内差异,造成这一差异的主要成因包括植被、水体等环境要素配置、建筑布局与邻近效应;④ 建筑层高与地表温度呈现显著的负相关关系(r=-0.858, p< 0.001),并且由于高层建筑对太阳辐射的遮挡,其建筑阴影能够部分降低周边相对低矮建筑的表面温度和区域温度;⑤ 在今后的规划中,低矮连片的高密度居住区是改善城市热环境的重点区域,同时高层建筑虽有一定的降温效果,但对于城市风道的阻挡作用不可忽视,应留出足够的城市通风道。
林中立, 徐涵秋. 基于局地气候分区体系的福州城市热环境研究[J]. 地球信息科学学报, 2022, 24(1): 189-200.DOI:10.12082/dqxxkx.2022.210669
LIN Zhongli, XU Hanqiu. A Study of Urban Thermal Environmental of Fuzhou based on "Local Climate Zones"[J]. Journal of Geo-information Science, 2022, 24(1): 189-200.DOI:10.12082/dqxxkx.2022.210669
表1
LCZ分类体系基本类型[9]
建筑类型(Built Types) | |||||
---|---|---|---|---|---|
LCZ 1 密集高层建筑 Compact high-rise (BS: ≥10; SVF: 0.2-0.4; BSF: 40-60; ISF: 40-60; PSF: <10) | LCZ 2 密集中层建筑 Compact mid-rise (BS: 3-9; SVF: 0.3-0.6; BSF: 40-70; ISF: 30-50; PSF: <20) | LCZ 3 密集低层建筑 Compact low-rise (BS: 1-3; SVF: 0.2-0.6; BSF: 40-70; ISF: 20-50; PSF: <30) | |||
![]() | ![]() | ![]() | |||
LCZ 4 开阔高层建筑 Open high-rise (BS: ≥10; SVF: 0.5-0.7; BSF: 20-40; ISF: 30-40; PSF: 30-40) | LCZ 5 开阔中层建筑 Open mid-rise (BS: 3-9; SVF: 0.5-0.8; BSF: 20-40; ISF: 30-50; PSF: 20-40) | LCZ 6 开阔低层建筑 Open low-rise (BS: 1-3; SVF: 0.6-0.9; BSF: 20-40; ISF: 20-50; PSF: 30-60) | |||
![]() | ![]() | ![]() | |||
LCZ 7 轻质低层建筑 lightweight low-rise (BS: 1-2; SVF: 0.2-0.5; BSF: 60-90; ISF: <20; PSF: <30) | LCZ 8 大型低层建筑 Large low-rise (BS: 1-3; SVF: >0.7; BSF: 30-50; ISF: 40-50; PSF: <20) | LCZ 9 零散建筑 Sparsely built (BS: 1-3; SVF: >0.8; BSF: 10-20; ISF: <20; PSF: 60-80) | LCZ 10 工业厂房 Heavy industry (BS: 2-5; SVF: 0.6-0.9;BSF: 20-30;ISF: 20-40; PSF: 40-50) | ||
![]() | ![]() | ![]() | ![]() | ||
土地覆盖类型(Land Cover Types) | |||||
LCZ A 茂密树木 Dense trees (SVF: <0.4; BSF: <10; ISF: <10; PSF: >90; VH: 3-30) | LCZ B 稀疏树木 Scattered trees (SVF: 0.5-0.8; BSF: <10; ISF: <10; PSF: >90; VH: 3-15) | LCZ C 灌木和矮树 Bush, scrub (SVF: <0.7-0.9; BSF: <10; ISF: <10; PSF: >90; VH: <2) | LCZ D 低矮植被 Low plants (SVF: >0.9; BSF: <10; ISF: <10; PSF: >90; VH: <1) | ||
![]() | ![]() | ![]() | ![]() | ||
LCZ E 裸露的岩石或道路 Bare rock or paved (BSF: <10; ISF: >90; PSF: <10) | LCZ F 裸土或沙 Bare soil or sand (BSF: <10; ISF: <10; PSF: >90) | LCZ G 水体 Water (BSF: <10; ISF: <10; PSF: >90) | |||
![]() | ![]() | ![]() |
表2
局地气候区分类结果统计
LCZ类别 | 研究区 | 二环区 | 三环区 | |||||
---|---|---|---|---|---|---|---|---|
面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | |||
LCZ 1 密集高层建筑 | 3.61 | 2.21 | 2.05 | 4.66 | 1.56 | 1.30 | ||
LCZ 2 密集中层建筑 | 45.98 | 28.10 | 21.63 | 49.13 | 24.35 | 20.36 | ||
LCZ 3 密集低层建筑 | 41.08 | 25.10 | 6.73 | 15.28 | 34.35 | 28.72 | ||
LCZ 4 开阔高层建筑 | 26.42 | 16.15 | 8.11 | 18.43 | 18.31 | 15.31 | ||
LCZ 5 开阔中层建筑 | 3.77 | 2.30 | 0.46 | 1.05 | 3.30 | 2.76 | ||
LCZ 6 开阔低层建筑 | 6.49 | 3.97 | 0.77 | 1.74 | 5.73 | 4.79 | ||
LCZ 8 大型低层建筑 | 1.90 | 1.16 | 0.11 | 0.25 | 1.79 | 1.50 | ||
LCZ 10 工业厂房 | 0.48 | 0.29 | 0.04 | 0.09 | 0.44 | 0.37 | ||
LCZ A 茂密树木 | 0.19 | 0.11 | 0.00 | 0.00 | 0.19 | 0.16 | ||
LCZ B 稀疏树木 | 14.55 | 8.89 | 1.55 | 3.51 | 13.00 | 10.87 | ||
LCZ C 灌木和矮树 | 1.57 | 0.96 | 0.03 | 0.06 | 1.54 | 1.29 | ||
LCZ D 低矮植被 | 4.62 | 2.83 | 0.44 | 1.00 | 4.18 | 3.50 | ||
LCZ E 裸露的岩石或道路 | 5.96 | 3.64 | 1.26 | 2.86 | 4.70 | 3.93 | ||
LCZ F 裸土或沙 | 7.01 | 4.28 | 0.85 | 1.92 | 6.17 | 5.16 | ||
LCZ G 水体 | 9.34 | 5.71 | 2.39 | 5.42 | 6.96 | 5.82 | ||
合 计 | 163.64 | 100.00 | 44.02 | 100.00 | 119.62 | 100.00 |
表3
局地气候区各类别地表温度统计
LCZ类型 | LST/℃ | ||
---|---|---|---|
研究区 | 二环区 | 三环区 | |
LCZ 1 | 37.28 | 36.89 | 37.73 |
LCZ 2 | 38.69 | 38.46 | 38.85 |
LCZ 3 | 40.90 | 40.01 | 41.01 |
LCZ 4 | 36.77 | 36.53 | 36.91 |
LCZ 5 | 36.94 | 36.52 | 37.01 |
LCZ 6 | 38.83 | 38.51 | 38.90 |
LCZ 8 | 41.56 | 39.75 | 41.67 |
LCZ 10 | 40.39 | 38.19 | 40.27 |
LCZ A | 29.29 | - | 29.29 |
LCZ B | 33.05 | 33.48 | 33.07 |
LCZ C | 36.80 | 38.12 | 36.86 |
LCZ D | 35.44 | 35.69 | 35.69 |
LCZ E | 38.93 | 37.30 | 39.26 |
LCZ F | 40.20 | 39.42 | 40.26 |
LCZ G | 30.58 | 30.75 | 30.61 |
表5
LCZ 1—LCZ 6在不同区域的环境指标统计
LCZ类别 | IBI | Greenness | Wetness | |||||
---|---|---|---|---|---|---|---|---|
二环区 | 三环区 | 二环区 | 三环区 | 二环区 | 三环区 | |||
LCZ 1 | 0.641 | 0.648 | 0.626 | 0.625 | 0.724 | 0.720 | ||
LCZ 2 | 0.659 | 0.649 | 0.652 | 0.649 | 0.690 | 0.690 | ||
LCZ 3 | 0.718 | 0.719 | 0.628 | 0.620 | 0.634 | 0.631 | ||
LCZ 4 | 0.531 | 0.553 | 0.704 | 0.702 | 0.726 | 0.715 | ||
LCZ 5 | 0.505 | 0.539 | 0.712 | 0.707 | 0.735 | 0.722 | ||
LCZ 6 | 0.621 | 0.626 | 0.701 | 0.701 | 0.671 | 0.664 |
[1] | IPCC. AR6 Climate Change 2021: The Physical Science Basis[EB/OL].https://www.ipcc.ch/report/ar6/wg1/down loads/report/IPCC_AR6_WGI_Full_Report.pdf, (2021-08-07) [2021-08-20]. |
[2] |
Firozjaei M K, Weng Q, Zhao C, et al. Surface anthropogenic heat islands in six megacities: An assessment based on a triple-source surface energy balance model[J]. Remote Sensing of Environment, 2020, 242:111751. DOI: 10.1016/j.rse.2020.111751
doi: 10.1016/j.rse.2020.111751 |
[3] |
Manoli G, Fatichi S, Schlpfer M, et al. Magnitude of urban heat islands largely explained by climate and population[J]. Nature, 2019, 573(7772):55-60. DOI: 10.1038/s41586-019-1512-9
doi: 10.1038/s41586-019-1512-9 |
[4] | 侯路瑶, 姜允芳, 石铁矛, 等. 基于气候变化的城市规划研究进展与展望[J]. 城市规划, 2019, 43(3):121-132. |
[ Hou L Y, Jiang Y F, Shi T M, et al. Overview and prospect of urban planning studies based on climate change[J]. City Planning Review, 2019, 43(3):121-132. ] DOI: 10.11819/cpr20190317a
doi: 10.11819/cpr20190317a |
|
[5] |
Ng E. Towards planning and practical understanding of the need for meteorological and climatic information in the design of high-density cities: A case-based study of Hong Kong[J]. International Journal of Climatology, 2012, 32(4):582-598. DOI: 10.1002/joc.2292
doi: 10.1002/joc.2292 |
[6] |
Zheng Y S, Ren C, Xu Y, et al. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong[J]. Urban Climate, 2018, 24:419-448. DOI: 10.1016/j.uclim.2017.05.008
doi: 10.1016/j.uclim.2017.05.008 |
[7] | 陈方丽, 黄媛. 基于WUDAPT方法的成都市局地气候分区地图构建及其规划应用研究[J]. 城市建筑, 2018, 20:29-32. |
[ Chen F L, Huang Y. A study on the construction and planning application of local climate zoning map of Chengdu based on WUDAPT method[J]. Urbanism and Architecture, 2018, 20:29-32. ] DOI: 10.19892/j.cnki.csjz.2018.20.007
doi: 10.19892/j.cnki.csjz.2018.20.007 |
|
[8] | Stewart I D, Oke T R. Newly developed “thermal climate zones” for defining and measuring urban heat island magnitude in the canopy layer[C]. Phoenix: Preprints Eighth Symposium on Urban Environment, 2009. |
[9] |
Stewart I D, Oke T R. Local climate zones for urban temperature studies[J]. Bulletin of the American Meteorological Society, 2012, 93(12):1879-1900. DOI: 10.1175/BAMS-D-11-00019.1
doi: 10.1175/BAMS-D-11-00019.1 |
[10] |
Núñez Peiró M, Sánchez-Guevara Sánchez C, Neila González F J. Source area definition for local climate zones studies. A systematic review[J]. Building and Environment, 2019, 148:258-285. DOI: 10.1016/j.buildenv.2018.10.050
doi: 10.1016/j.buildenv.2018.10.050 |
[11] | 江斯达, 占文凤, 杨俊, 等. 局地气候分区框架下城市热岛时空分异特征研究进展[J]. 地理学报, 2020, 75(9):66-84. |
[ Jiang S D, Zhan W F, Yang J, et al. Urban heat island studies based on local climate zones: A systematic overview[J]. Acta Geographica Sinica, 2020, 75(9):66-84. ] DOI: 10.11821/dlxb202009004
doi: 10.11821/dlxb202009004 |
|
[12] |
Wang C, Middel A, Myint S W, et al. Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 141:59-71. DOI: 10.1016/j.isprsjprs.2018.04.009
doi: 10.1016/j.isprsjprs.2018.04.009 |
[13] |
Geletič J, Lehnert M, Savic S, et al. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic[J]. Science of The Total Environment, 2018, 624:385-395. DOI: 10.1016/j.scitotenv.2017.12.076
doi: 10.1016/j.scitotenv.2017.12.076 |
[14] |
Chen X, Xu Y, Yang J, et al. Remote sensing of urban thermal environments within local climate zones: A case study of two high-density subtropical Chinese cities[J]. Urban Climate, 2020, 31:100568. DOI: 10.1016/j.uclim.2019.100568
doi: 10.1016/j.uclim.2019.100568 |
[15] | USGS. Landsat 8 (L8) Data Users Handbook (Version 5.0)[OL]. https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf, (2019-11-26) [2021-08-15]. |
[16] |
林中立, 徐涵秋. 基于LCZ的城市热岛强度研究[J]. 地球信息科学学报, 2017, 19(5):713-722.
doi: 10.3724/SP.J.1047.2017.00713 |
[ Lin Z L, Xu H Q. A study of urban heat island intensity based on “local climate zones”[J]. Journal of Geo-information Science, 2017, 19(5):713-722. ] DOI: 10.3724/SP.J.1047.2017.00000
doi: 10.3724/SP.J.1047.2017.00000 |
|
[17] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45:5-32. DOI: 10.1023/A:1010933404324
doi: 10.1023/A:1010933404324 |
[18] |
Xu Y, Ren C, Cai M, et al. Classification of local climate zones using ASTER and Landsat data for high-density cities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7):3397-3405. DOI: 10.1109/JSTARS.2017.2683484
doi: 10.1109/JSTARS.2017.2683484 |
[19] |
Bechtel B, Alexander PJ, Beck C, et al. Generating WUDAPT Level 0 data - Current status of production and evaluation[J]. Urban Climate, 2019, 27:24-45. DOI: 10.1016/j.uclim.2018.10.001
doi: 10.1016/j.uclim.2018.10.001 |
[20] |
Ching J, Mills G, Bechtel B, et al. World Urban Database and Access Portal Tools (WUDAPT), an urban weather, climate, and environmental modeling infrastructure for the Anthropocene[J]. Bulletin of the American Meteorological Society, 2018, 99(9):1907-1924. DOI: 10.1175/BAMS-D-16-0236.1
doi: 10.1175/BAMS-D-16-0236.1 |
[21] |
Wang R, Ren C, Xu Y, et al. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong[J]. Urban Climate, 2018, 24:567-576. DOI: 10.1016/j.uclim.2017.10.001
doi: 10.1016/j.uclim.2017.10.001 |
[22] |
Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008, 29(14):4269-4276. DOI: 10.1080/01431160802039957
doi: 10.1080/01431160802039957 |
[23] |
Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14):3025-3033. DOI: 10.1080/01431160600589179
doi: 10.1080/01431160600589179 |
[24] |
Goward S N, Xue Y K, Czajkowski K P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model[J]. Remote Sensing of Environment, 2002, 79(2-3):225-242. DOI: 10.1016/S0034-4257(01)00275-9
doi: 10.1016/S0034-4257(01)00275-9 |
[25] | 徐涵秋. 基于城市地表参数变化的城市热岛效应分析[J]. 生态学报, 2011, 31(4):3890-3901. |
[ Xu H Q. Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors[J]. Acta Ecologica Sinica, 2011, 31(4):3890-3901. ] | |
[26] |
Cristóbal J, Jiménez-Muñoz J, Prakash A, et al. An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band[J]. Remote Sensing, 2018, 10(3):431. DOI: 10.3390/rs10030431
doi: 10.3390/rs10030431 |
[27] |
Jimenez-Munoz J, Sobrino J, Skokovic D, et al. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1840-1843. DOI: 10.1109/LGRS.2014.2312032
doi: 10.1109/LGRS.2014.2312032 |
[28] |
Jiménez Muñoz J, Sobrino J. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22):4688. DOI: 10.1029/2003JD003480
doi: 10.1029/2003JD003480 |
[29] | Crist E P, Cicone R C. Application of the tasseled cap concept to simulated Thematic Mapper data[J]. Photogrammetric Engineering and Remote Sensing, 1984, 50(3):343-352. |
[30] |
Helmer E H, Brown S, Cohen W B. Mapping montane tropical forest successional stage and land use with multi-date Landsat imagery[J]. International Journal of Remote Sensing, 2000, 21(11):2163-2183. DOI: 10.1080/01431160050029495
doi: 10.1080/01431160050029495 |
[31] |
Baig M H A, Zhang L, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5):423-431. DOI: 10.1080/2150704X.2014.915434
doi: 10.1080/2150704X.2014.915434 |
[32] | 林中立, 徐涵秋. 近20年来新旧“火炉城市”热岛状况对比研究[J]. 遥感技术与应用, 2019, 34(3):521-530. |
[ Lin Z L, Xu H Q. Comparative study on the urban heat island effect in “Stove Cities” during the last 20 years[J]. Remote Sensing Technology and Application, 2019, 34(3):521-530. ] DOI: 10.11873/j.issn.1004-0323.2019.3.0521
doi: 10.11873/j.issn.1004-0323.2019.3.0521 |
|
[33] | 林中立, 徐涵秋. 基于DTR的城市热岛强度指数构建与应用——以福州市为例[J]. 应用基础与工程科学学报, 2017, 25(2):266-275. |
[ Lin Z L, Xu H Q. A new remote sensing index for assessing urban heat island intensity based on diurnal temperature range: A case study in Fuzhou, China[J]. Journal of Basic Science and Engineering, 2017, 25(2):266-275. ] DOI: 10.16058/j.issn.1005-0930.2017.02.006
doi: 10.16058/j.issn.1005-0930.2017.02.006 |
|
[34] |
Kwok Y T, Schoetter R, Lau KK-L, Hidalgo J, Ren C, Pigeon G, et al. How well does the local climate zone scheme discern the thermal environment of Toulouse (France)? An analysis using numberical simulation data[J]. International Journal of Climatology, 2019, 39:5292-5315. DOI: 10.1002/joc.6140
doi: 10.1002/joc.6140 |
[35] |
Grimmond S. Urbanization and global environmental change: local effects of urban warming[J]. Geographical Journal, 2007, 173:83-88. DOI: 10.1111/j.1475-4959.2007.232_3.x
doi: 10.1111/j.1475-4959.2007.232_3.x |
[36] |
Yang J, Jin S, Xiao X, et al. Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities[J]. Sustainable Cities and Society, 2019, 47:101487. DOI: 10.1016/j.scs.2019.101487
doi: 10.1016/j.scs.2019.101487 |
[37] |
Wang M, Xu H. The impact of building height on urban thermal environment in summer: A case study of Chinese megacities[J]. PLoS One, 2021, 16(4):e0247786. DOI: 10.1371/journal.pone.0247786
doi: 10.1371/journal.pone.0247786 |
[38] |
侯浩然, 丁凤, 黎勤生. 近20年来福州城市热环境变化遥感分析[J]. 地球信息科学学报, 2018, 20(3):385-395.
doi: 10.12082/dqxxkx.2018.170342 |
[ Hou H R, Ding F, Li Q S. Remote sensing analysis of changes of urban thermal environment of Fuzhou city in China in the past 20 years[J]. Journal of Geo-information Science, 2018, 20(3):385-395. ] DOI: 10.12082/dqxxkx.2018.170342
doi: 10.12082/dqxxkx.2018.170342 |
|
[39] |
Watanabe S, Nagano K, Ishii J, et al. Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region[J]. Building and Environment, 2014, 82:556-565. DOI: 10.1016/j.buildenv.2014.10.002
doi: 10.1016/j.buildenv.2014.10.002 |
[40] |
Yu K, Chen Y, Wang D, et al. Study of the seasonal effect of building shadows on urban land surface temperatures based on remote sensing data[J]. Remote Sensing, 2019, 11:497. DOI: 10.3390/rs11050497
doi: 10.3390/rs11050497 |
[41] | 唐菲, 徐涵秋. 旧城改造与城市热岛效应关系的遥感研究:以福州市苍霞片区为例[J]. 地理科学, 2011, 31(10):1228-1234. |
[ Tang F, Xu H Q. The relationship between urban reconstruction and urban heat island effect based on remote sensing technology: Cangxia District of Fuzhou city, China[J]. Scientia Geographica Sinica, 2011, 31(10):1228-1234. ] DOI: 10.13249/j.cnki.sgs.2011.010.1228
doi: 10.13249/j.cnki.sgs.2011.010.1228 |
|
[42] | 中华人民共和国住房和城乡建设部, 城市居住区规划设计标准(GB50180-2018)[S/OL]. (2018-07-10) [2021-08-20]. http://www.mohurd.gov.cn/wjfb/201811/t20181130_238590.html. |
[ Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for planning and design of urban residential area (GB50180-2018)[EB/OL]. (2018-07-10) [2021-08-20]. http://www.mohurd.gov.cn/wjfb/201811/t20181130_2385 90.html.] | |
[43] | 张雅妮, 曾小洲, 肖毅强. 基于风热环境优化的“山·城共构”城市设计初探——以广州白云新城为例[J]. 城市规划, 2018, 42(12):116-124. |
[ Zhang Y N, Zeng X Z, Xiao Y Q. A preliminary research on the urban design of “mountain-city” based on optimization of wind and thermal environment: with Baiyun new town, Guangzhou as an example[J]. City Planning Review, 2018, 42(12):116-124. ] DOI: 10.11819/cpr20181215a
doi: 10.11819/cpr20181215a |
[1] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[2] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[3] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[4] | 高鹏飞, 曹雪峰, 李科, 游雄. 融合多元稀疏特征与阶层深度特征的遥感影像目标检测[J]. 地球信息科学学报, 2023, 25(3): 638-653. |
[5] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[6] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[7] | 饶子昱, 卢俊, 郭海涛, 余东行, 侯青峰. 利用视角转换的跨视角影像匹配方法[J]. 地球信息科学学报, 2023, 25(2): 368-379. |
[8] | 王龙号, 蓝朝桢, 姚富山, 侯慧太, 武蓓蓓. 多源遥感影像深度特征融合匹配算法[J]. 地球信息科学学报, 2023, 25(2): 380-395. |
[9] | 甘聪聪, 邱炳文, 张建阳, 姚铖鑫, 叶智燕, 黄姮, 黄莹泽, 彭玉凤, 林艺真, 林多多, 苏中豪. 基于Sentinel-1/2动态耦合移栽期特征的水稻种植模式识别[J]. 地球信息科学学报, 2023, 25(1): 153-162. |
[10] | 于明洋, 陈肖娴, 张文焯, 刘耀辉. 融合网格注意力阀门和特征金字塔结构的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(9): 1785-1802. |
[11] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[12] | 吕爱锋, 亓珊珊. 遥感及再分析降水产品在缺资料干旱内陆盆地的适用性评估[J]. 地球信息科学学报, 2022, 24(9): 1817-1834. |
[13] | 谢晓苇, 李代超, 卢嘉奇, 吴升, 许芳年. 基于移动监测数据的不同城市场景下PM2.5浓度精细模拟与时空特征解析[J]. 地球信息科学学报, 2022, 24(8): 1459-1474. |
[14] | 廖周伟, 关燕宁, 郭杉, 蔡丹路, 于敏, 姚武韬, 张春燕, 邓锐. 基于网格的街区尺度城市绿度度量方法[J]. 地球信息科学学报, 2022, 24(8): 1475-1487. |
[15] | 闵杰, 张永生, 于英, 吕可枫, 王自全, 张磊. 增强型遥感影像SRGAN算法及其在三维重建精度提升中的应用[J]. 地球信息科学学报, 2022, 24(8): 1631-1644. |
|