地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (6): 1087-1098.doi: 10.12082/dqxxkx.2022.210685
• “2021中国地理信息科学理论与方法学术年会”优秀论文 • 上一篇 下一篇
收稿日期:
2021-10-29
修回日期:
2021-12-31
出版日期:
2022-06-25
发布日期:
2022-08-25
作者简介:
王晓蕾(1988— ),女,河南周口人,讲师,主要从事高性能地理计算与遥感研究。E-mail: xiaolei8788@zzu.edu.cn
基金资助:
WANG Xiaolei1,2,*(), SHI Shouhai1
Received:
2021-10-29
Revised:
2021-12-31
Online:
2022-06-25
Published:
2022-08-25
Contact:
WANG Xiaolei
Supported by:
摘要:
黄河流域作为中国东部平原的生态屏障,研讨其植被覆盖的时空变化有助于生态环境治理。本文利用GEE平台,基于Landsat数据通过像元二分模型反演了1990—2020年黄河流域植被覆盖度(FVC),并通过Theil-Sen Median趋势分析和 Mann-Kendall检验方法剖析FVC的时空变化趋势,挖掘出FVC趋势变化与海拔、坡度、坡向等地形因子之间的响应关系。结果表明:① 黄河流域FVC整体呈现西北低东南高的空间分布趋势,其中低等FVC占整个流域面积的45%,主要集中于西北部干旱半干旱地区;② 流域中部植被覆盖改善明显,占整个流域的57.07%,西北部和东南部退化程度相对较高;③ 植被覆盖受地形效应影响较为显著,在坡度大于40°及高程(-31~637 m)时高等级FVC占比较高,坡度8~18°及高程1852~2414 m范围内植被改善效果相对较好。结果可以为黄河流域生态环境保护及高质量发展提供科学支撑。
王晓蕾, 石守海. 基于GEE的黄河流域植被时空变化及其地形效应研究[J]. 地球信息科学学报, 2022, 24(6): 1087-1098.DOI:10.12082/dqxxkx.2022.210685
WANG Xiaolei, SHI Shouhai. Spatio-temporal Changes of Vegetation in the Yellow River Basin and Related Effect of Landform based on GEE[J]. Journal of Geo-information Science, 2022, 24(6): 1087-1098.DOI:10.12082/dqxxkx.2022.210685
[1] |
Yan K, Gao S, Chi H, et al. Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation[J]. IEEE Transactions on Geoscience and Remote Sensing 2022, 60:1-14. DOI: 10.1109/tgrs.2020.304849
doi: 10.1109/tgrs.2020.304849 |
[2] |
Ding Y, Zhang H, Zhao K, et al. Investigating the accuracy of vegetation index-based models for estimating the fractional vegetation cover and the effects of varying soil backgrounds using in situ measurements and the PROSAIL model[J]. International Journal of Remote Sensing. 2017, 38(14):4206-4223. DOI: 10.1080/01431161.2017.1312617
doi: 10.1080/01431161.2017.1312617 |
[3] |
Purevdorj T, Tateishi R, Ishiyama T, et al. Relationships between percent vegetation cover and vegetation indices[J]. International Journal of Remote Sensing. 1998, 19(18):3519-3535. DOI: org/10.1080/014311698213795
doi: org/10.1080/014311698213795 |
[4] |
Tu Y, Jia K, Wei X, et al. A time-efficient fractional vegetation cover estimation method using the dynamic vegetation growth information from time series GLASS FVC product[J]. IEEE Geoscience and Remote Sensing Letters. 2020, 17(10):1672-1676. DOI: 10.1109/lgrs.2019.2954291
doi: 10.1109/lgrs.2019.2954291 |
[5] |
Anatoly A G, Yoram J K, Robert S, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment. 2002, 80(1):76-87. DOI: 10.1016/S0034-4257(01)00289-9
doi: 10.1016/S0034-4257(01)00289-9 |
[6] |
Kun J, Shunlin L, Xingfa G, et al. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data[J]. Remote Sensing of Environment. 2016, 177:184-191. DOI: 10.1016/j.rse.2016.02.019
doi: 10.1016/j.rse.2016.02.019 |
[7] |
Tian F, Liu L, Yang J, et al. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities[J]. Ecological Indicators. 2021, 125:107479. DOI: 10.1016/j.ecolind.2021.107479
doi: 10.1016/j.ecolind.2021.107479 |
[8] |
Piao S, Wang X, Park T. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment. 2020, 1(1):14-27. DOI: 10.1038/s43017-019-0001-x
doi: 10.1038/s43017-019-0001-x |
[9] | 中共中央、国务院. 黄河流域生态保护和高质量发展规划纲要[EB/OL]. [2021-12-02]. http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm |
[ The Central Committee of the Communist Party of China and the State Council. Outline of the Yellow River Basin Ecological Protection and High-quality Development Plan[EB/OL]. [2021-12-02]. http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm ] | |
[10] |
Zhang W, Wang L, Xiang F, et al. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China[J]. Ecological Indicators, 2020, 110:105892. DOI: 10.1016/j.ecoli nd.2019.105892
doi: 10.1016/j.ecoli nd.2019.105892 |
[11] | 张静, 杜加强, 盛芝露,等. 1982-2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5):929-937. |
[ Zhang J, Du J Q, Sheng Z L, et al. Spatio-temporal changes of vegetation cover and their influencing factors in the Yellow River Basin from 1982 to 2015 Ecology and Environmental Sciences, 2021, 30(5):929-937. ]DOI: 10.16258/j.cnki.1674-5906.2021.05.005
doi: 10.16258/j.cnki.1674-5906.2021.05.005 |
|
[12] | 孙高鹏, 刘宪锋, 王小红,等. 2001-2020年黄河流域植被覆盖变化及其影响因素[J]. 中国沙漠, 2021, 41(4):205-212. |
[ Sun G P, Liu X F, Wang X H, et al. Changes in vegetation coverage and its influencing factors across the Yellow River Basin during 2001-2020[J]. Journal of Desert Research, 2021, 41(4):205-212. ] | |
[13] |
张志强, 刘欢, 左其亭,等. 2000-2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4):849-858.
doi: 10.18402/resci.2021.04.18 |
[ Zhang Z Q, Liu H, Zuo Q T, et al. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000-2019[J]. Resources Science, 2021, 43(4):849-858. ]DOI: 10.18402/resci.2021.04.18
doi: 10.18402/resci.2021.04.18 |
|
[14] | 劳聪聪, 辛沛, 左寅,等. 1996-2020年长江口九段沙湿地植被覆盖对潮沟演变规律的影响[J]. 水科学进展. 2022, 33(1):15-26. |
[ Lao C C, Xin P Zuo Yet al. Effect of fractional vegetation cover on the evolution of tidal creeks in the Jiuduansha shoal (China) during Advances in Water Science, 2022, 33(1):15-26. ] | |
[15] |
Lu L, Shen X, Cao R. Elevational movement of vegetation greenness on the Tibetan Plateau: Evidence from the Landsat satellite observations during the last three decades[J]. Atmosphere, 2021, 12(2):161. DOI: 10.3390/ATMOS12020161
doi: 10.3390/ATMOS12020161 |
[16] | 纪秋磊, 梁伟, 傅伯杰,等. 基于Google Earth Engine与复杂网络的黄河流域土地利用/覆被变化分析[J]. 生态学报. 2022, 42(6):2122-2135. |
[ Ji Q L, Liang W, Fu B J, et al. Land use/cover change in the Yellow River Basin based on Google Earth Engine and complex network[J]. Acta Ecoloica Sinica, 2022, 42(6):2122-2135. ] DOI: 10.5846/stxb202011132938
doi: 10.5846/stxb202011132938 |
|
[17] | 杨泽康, 田佳, 李万源,等. 黄河流域生态环境质量时空格局与演变趋势[J]. 生态学报. 2021, 41(19):7627-7636. |
[ Yang Z K, Tian J, Li W Y, et al. Spatio-temporal pattern and evolution trend of ecological environment quality in the Yellow River Basin[J]. Acta Ecoloica Sinica, 2021, 41(19):7627-7636. ] DOI: 10.5846/stxb202012083131
doi: 10.5846/stxb202012083131 |
|
[18] | 覃巧婷, 陈建军, 杨艳萍,等. 黄河源植被时空变化及其对地形和气候的响应[J]. 中国环境科学, 2021, 41(8):3832-3841. |
[ Tan Q T, Chen J J, Yang Y P, et al. Spatial and temporal variations of vegetation and its response to topography and climate in the source region of the Yellow River[J]. China Environmental Science, 2021, 41(8):3832-3841. ] DOI: 10.19674/j.cnki.issn1000-6923.20210324.005
doi: 10.19674/j.cnki.issn1000-6923.20210324.005 |
|
[19] |
程东亚, 李旭东. 喀斯特地区植被覆盖度变化及地形与人口效应研究[J]. 地球信息科学学报, 2019, 21(8):1227-1239.
doi: 10.12082/dqxxkx.2019.180548 |
[ Cheng D Y, Li X D. Vegetation coverage change in a karst area and effects of terrain and population[J]. Journal of Geo-information Science, 2019, 21(8):1227-1239. ] DOI: 10.12082/dqxxkx.2019.180548
doi: 10.12082/dqxxkx.2019.180548 |
|
[20] |
Jiang W, Yuan L, Wang W, et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin[J]. Ecological Indicators, 2015, 51:117-126. DOI: 10.1016/j.ecolind.2014.07.031
doi: 10.1016/j.ecolind.2014.07.031 |
[21] |
刘梁美子, 占车生, 胡实,等. 黔桂喀斯特山区植被变化及其地形效应[J]. 地理研究, 2018, 37(12):2433-2446.
doi: 10.11821/dlyj201812006 |
[ Liu L M Z, Zhan C S, Hu S, et al. Vegetation change and its topographic effects in the karst mountainous areas of Guizhou and Guangxi[J]. Geographical Research, 2018, 37(12):2433-2446. ] DOI: 10.11821/dlyj201812006
doi: 10.11821/dlyj201812006 |
|
[22] |
张兴航, 张百平, 王晶,等. 神农架林区植被分布与地形的关系研究[J]. 地球信息科学学报, 2020, 22(3):482-493.
doi: 10.12082/dqxxkx.2020.190553 |
[ Zhang X H, Zhang B P, Wang J, et al. Study on the relationship between terrain and distribution of the vegetation in Shennongjia Forestry District[J]. Journal of Geo-information Science, 2020, 22(3):482-493. ] DOI: 10.12082/dqxxkx.2020.190553
doi: 10.12082/dqxxkx.2020.190553 |
|
[23] | 王毅, 郭跃. 喀斯特地貌区植被覆盖与地形因子的空间关系分析--以贵州普定县为例[J]. 长江流域资源与环境, 2018, 27(1):157-167. |
[ Wang Y, Guo Y. Analysis of spatial correlation between vegetation coverage and terrain factors in Karst Landform: Taking Puding Area in Guizhou for example[J]. Resources and Environment in the Yangtze Basin, 2018, 27(1):157-167. ] DOI: 10.11870/cjlyzyyhj201801018
doi: 10.11870/cjlyzyyhj201801018 |
|
[24] |
金凯, 王飞, 韩剑桥,等. 1982-2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5):961-974.
doi: 10.11821/dlxb202005006 |
[ Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015 Acta Geographica Sinica, 2020, 75(5):961-974. ] | |
[25] | 李苗苗, 吴炳方, 颜长珍,等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004(4):153-159. |
[ Li M M, Wu B F, Yan Z Z, et al. Estimation of vegetation fraction in the upper Basin of Miyun reservoir by remote sensing[J]. Resources Science, 2004(4):153-159. ] | |
[26] |
何宝忠, 丁建丽, 张喆,等. 新疆植被覆盖度趋势演变实验性分析[J]. 地理学报, 2016, 71(11):1948-1966.
doi: 10.11821/dlxb201611007 |
[ He B Z, Ding J L, Zhang Z, et al. Experimental analysis of spatial and temporal dynamics of fractional vegetation cover in Xinjiang[J]. Acta Geographica Sinica, 2016, 71(11):1948-1966. ] DOI: 10.11821/dlxb201611007
doi: 10.11821/dlxb201611007 |
|
[27] | 李晶, 闫星光, 闫萧萧,等. 基于GEE云平台的黄河流域植被覆盖度时空变化特征[J]. 煤炭学报, 2021, 46(5):1439-1450. |
[ Li J, Yan X G, Yan X X, et al. Temporal and spatial variation characteristic of vegetation coverage in the Yellow River Basin based on GEE cloud platform[J]. Journal of China Coal Society, 2021, 46(5):1439-1450. ] DOI: org/10.13225/j.cnki.jccs.ST21.0331
doi: org/10.13225/j.cnki.jccs.ST21.0331 |
|
[28] | 陶帅, 邝婷婷, 彭文甫,等. 2000-2015年长江上游NDVI时空变化及驱动力--以宜宾市为例[J]. 生态学报, 2020, 40(14):5029-5043. |
[ Tao S, Kuang T T, Peng W F, et al. Analyzing the spatio-temporal variation and drivers of NDVI in upper reaches of the Yangtze River from 2000 to 2015: A case study of Yibin City[J]. Acta Ecologica Sinica, 2020, 40(14):5029-5043. ] | |
[29] | 刘亚龙, 王庆, 毕景芝,等. 基于Mann-Kendall方法的胶东半岛海岸带归一化植被指数趋势分析[J]. 海洋学报, 2010, 32(3):79-87. |
[ Liu Y L, Wang Q, Bi J Z, et al. The analysis of NDVI trends in the coastal zone based on Mann-Kendall test: A case in the Jiaodong Peninsula[J]. Acta Oceanologica Sinica, 2010, 32(3):79-87. ] | |
[30] |
YUE S, PILON P, CAVADIAS G. Power of the Mann-Kendall and Spearman's Rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology, 2002, 259:254-271. DOI: 10.1016/S0022-1694(02)00078-1
doi: 10.1016/S0022-1694(02)00078-1 |
[31] |
符静, 秦建新, 张猛,等. 2001-2013年洞庭湖流域植被覆盖度时空变化特征[J]. 地球信息科学学报, 2016, 18(9):1209-1216.
doi: 10.3724/SP.J.1047.2016.01209 |
[ Fu J, Qin J X, Zhang M, et al. Spatial-temporal variations of vegetation coverage in the Lake Dongting Basin from 2001 to 2013. Journal of Geo-information Science, 2016, 18(9):1209-1216. ] | |
[32] |
Peng W, Kuang T, Tao S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China[J]. Journal of Cleaner Production, 2019, 233:353-367. DOI: org/10.1016/j.jclepro.2019.05.355
doi: org/10.1016/j.jclepro.2019.05.355 |
[33] | 李瑶, 戴文鸿, 高嵩,等. 黄河下游植被覆盖度动态变化及其与水沙过程关系[J]. 人民黄河: 2022, 44(4):31-37,52. |
Dai W H, Gao S, et al. Vegetation dynamics and its relations with water-sediment processes in Lower Yellow River[J]. Yellow River, 2022, 44(4):31-37,52. ] DOI: 10.3969/j.issn.1000-1379.2022.04.007
doi: 10.3969/j.issn.1000-1379.2022.04.007 |
|
[34] | 裴志林, 杨勤科, 王春梅,等. 黄河上游植被覆盖度空间分布特征及其影响因素[J]. 干旱区研究, 2019, 36(3):546-555. |
[ Pei Z L, Yang Q K, Wang C M, et al. Spatial distribution of vegetation coverage and its affecting factors in the upper reaches of the Yellow River[J]. Arid Zone Reserch, 2019, 36(3):546-555. ] DOI: 10.13866/j.azr.2019.0 3.03
doi: 10.13866/j.azr.2019.0 3.03 |
|
[35] |
Zhang D, Jia Q, Wang P, et al. Analysis of spatial variability in factors contributing to vegetation restoration in Yan'an, China[J]. Ecological Indicators, 2020, 113:106278. DOI: 10.1016/j.ecolind.2020.106278
doi: 10.1016/j.ecolind.2020.106278 |
[36] | 赵东晓, 蔡建勤, 土小宁,等. 黄河流域水土保持植被建设对策[J]. 中国水利, 2020(6):30-33. |
[ Zhao D X, Cai J Q, Tu X N, et al. Vegetation construction measures for soil conservation in Yellow River Basin[J]. China Water Resources, 2020(6):30-33. ] |
[1] | 李俊明, 周佳卉, 李杰, 高佳源. 基于贝叶斯统计的黄河流域生态文明与共同富裕的时空协同演进研究[J]. 地球信息科学学报, 2023, 25(4): 766-782. |
[2] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[3] | 甘聪聪, 邱炳文, 张建阳, 姚铖鑫, 叶智燕, 黄姮, 黄莹泽, 彭玉凤, 林艺真, 林多多, 苏中豪. 基于Sentinel-1/2动态耦合移栽期特征的水稻种植模式识别[J]. 地球信息科学学报, 2023, 25(1): 153-162. |
[4] | 张颖, 汪侠, 闫艺涵, 史舒悦, 海少琪. 基于夜间灯光数据的西南地区县域旅游多维减贫效应时空变化研究[J]. 地球信息科学学报, 2022, 24(8): 1541-1557. |
[5] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[6] | 姚锦一, 王卷乐, 严欣荣, 魏海硕, Altansukh Ochir, Davaadorj Davaasuren. 基于深度神经网络的蒙古国色楞格河流域水体信息提取[J]. 地球信息科学学报, 2022, 24(5): 1009-1017. |
[7] | 张永凯, 杨春月, 张晚军, 毕潇梅. 黄河流域人口预期寿命的时空演化及影响因素分析[J]. 地球信息科学学报, 2022, 24(5): 902-913. |
[8] | 陈点点, 陈芸芝, 冯险峰, 武爽. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 2022, 24(4): 780-791. |
[9] | 张雄一, 邵全琴, 宁佳, 杨雪清, 巩国丽, 刘国波. 三北工程区植被恢复对土壤风蚀的影响及植被恢复潜力研究[J]. 地球信息科学学报, 2022, 24(11): 2153-2170. |
[10] | 郭长庆, 迟文峰, 匡文慧, 窦银银, 傅舒婧, 雷梅. 1990—2020年中国能源开采和加工场地多源数据综合制图与时空变化分析[J]. 地球信息科学学报, 2022, 24(1): 127-140. |
[11] | 李玉, 张友水. 植被与不透水面的降温和增温效率分析方法[J]. 地球信息科学学报, 2021, 23(9): 1548-1558. |
[12] | 葛中曦, 黄静, 赖佩玉, 郝斌飞, 赵银军, 马明国. 耕地复种指数遥感监测研究进展[J]. 地球信息科学学报, 2021, 23(7): 1169-1184. |
[13] | 熊皓丽, 周小成, 汪小钦, 崔雅君. 基于GEE云平台的福建省10 m分辨率茶园专题空间分布制图[J]. 地球信息科学学报, 2021, 23(7): 1325-1337. |
[14] | 刘戈, 姜小光, 唐伯惠. 特征优选与卷积神经网络在农作物精细分类中的应用研究[J]. 地球信息科学学报, 2021, 23(6): 1071-1081. |
[15] | 张菊, 房世波, 刘汉湖. 基于微波数据与光学数据集成的机器学习技术在作物产量估算中的应用[J]. 地球信息科学学报, 2021, 23(6): 1082-1091. |
|