地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (5): 815-826.doi: 10.12082/dqxxkx.2022.220001
• 地球信息科学理论与方法 • 下一篇
曾梦熊(), 华一新*(
), 张政, 张江水, 杨振凯, 韦原原
收稿日期:
2022-01-01
修回日期:
2022-03-08
出版日期:
2022-05-25
发布日期:
2022-07-25
通讯作者:
* 华一新(1963— ),男,江苏句容人,博士,教授,主要从事地理信息系统平台及其应用技术研究。 E-mail: chxyhyx@163.com作者简介:
曾梦熊(1986— ),男,湖南湘乡人,博士生,主要从事地理信息系统开发与应用研究。E-mail: dreambearzmx@sina.com
基金资助:
ZENG Mengxiong(), HUA Yixin*(
), ZHANG Zheng, ZHANG Jiangshui, YANG Zhenkai, WEI Yuanyuan
Received:
2022-01-01
Revised:
2022-03-08
Online:
2022-05-25
Published:
2022-07-25
Supported by:
摘要:
基于Agent建模的地理模拟是认识和理解动态地理现象的有效方法,但随着地理模拟的规模和复杂性不断增加,模型的计算问题开始凸显。分布式并行仿真是解决大规模Agent复杂模拟计算的途径,然而已有研究基于Agent建模/仿真软件构建并行仿真系统的方式并不适用于具有高移动与行为交互的空间Agent建模及其模拟过程的实时可视化。为解决这个问题, 本文提出了一个分布式地理模拟框架DGSimF,用于大规模动态空间Agent模拟,支持模拟过程的实时表示与分析。设计了一个简单但高效的时空数据模型建模空间Agent,支持直接基于Agent行为建模集成地学模型,采用了时间微分方法协同各计算节点行为的执行,实现以“任务并行”的方式进行分布式计算以提高仿真性能,构建了基于三维地球渲染引擎的虚拟地理环境,提供模拟过程的实时可视化。最后,以“红蓝对抗”案例进行了实验验证,对不同模拟计算量和不同客户端数量下的仿真性能进行了分析,结果表明DGSimF可以为具有时空特征变化与行为交互的大规模空间Agent模拟提供一个有效的平台。通过扩展计算节点,DGSimF可以有效地缓解复杂模拟计算的压力问题,并且仿真性能较高,在实验中并行效率保持在0.7以上。
曾梦熊, 华一新, 张政, 张江水, 杨振凯, 韦原原. 面向大规模空间Agent建模的分布式地理模拟框架[J]. 地球信息科学学报, 2022, 24(5): 815-826.DOI:10.12082/dqxxkx.2022.220001
ZENG Mengxiong, HUA Yixin, ZHANG Zheng, ZHANG Jiangshui, YANG Zhenkai, WEI Yuanyuan. A Distributed Geospatial Simulation Framework for Massive Spatial Agent-Based Modeling[J]. Journal of Geo-information Science, 2022, 24(5): 815-826.DOI:10.12082/dqxxkx.2022.220001
表1
空间Agent模拟分布式并行仿真实验系统配置
类型 | STDB | DSIME | 客户端#1 | 客户端#2 | 客户端#3 | 管理端 |
---|---|---|---|---|---|---|
数量 | 1 | 3 | 1 | 1 | 1 | 1 |
CPU | Intel Xeon E5-2620(6×12 cores, 2.4GHz) | Intel Xeon E5-2620(6×12 cores,2.4 GHz) | Intel Core i7-6700(4×8 cores,3.4 GHz) | Intel Core i7-7700HQ (4×8 cores, 2.8 GHz) | Intel Core i7-6700(4×8 cores, 3.40 GHz) | Intel Core i7-10750 (6×12 cores,2.6 GHz) |
内存 | 32 GB (2133 MHz) | 32 GB (2133 MHz) | 8 GB (2133 MHz) | 16 GB (2400 MHz) | 16 GB (2933 MHz) | 16 GB (3200 MHz) |
硬盘 | 12 TB (10krpm,SAS) | 12 TB (10krpm,SAS) | 1 TB (7.5krpm,SAS) | 1 TB (7.5krpm,SAS) | 2 TB (7.5krpm,SAS) | 1 TB (7.5krpm,SAS) |
内核 | 3.10.0-327.el7.x86_64 | 3.10.0-327.el7.x86_64 | ||||
操作系统 | CentOS 7 | CentOS 7 | Windows 10 | Windows 10 | Windows 10 | Windows 10 |
[1] |
Wallentin G. Spatial simulation: A spatial perspective on individual-based ecology—a review[J]. Ecological Modelling, 2017, 350(4):30-41. DOI: 10.1016/j.ecolmodel.2017.01.017
doi: 10.1016/j.ecolmodel.2017.01.017 |
[2] | 余强毅, 吴文斌, 唐华俊, 等. 复杂系统理论与Agent模型在土地变化科学中的研究进展[J]. 地理学报, 2011, 66(11):1518-1530. |
[ Yu Q Y, Wu W B, Tang H J, et al. Complex system theory and Agent-based modeling: progresses in land change science[J]. Acta Geographica Sinica, 2011, 66(11):1518-1530. ] DOI: 10.11821/xb201111008
doi: 10.11821/xb201111008 |
|
[3] |
翟瑞雪, 戴尔阜. 基于主体模型的人地系统复杂性研究[J]. 地理研究, 2017, 36(10):1925-1935.
doi: 10.11821/dlyj201710009 |
[ Zhai R X, Dai E F. Research on the complexity of man-land system based on agent-based models[J]. Geographical Research, 2017, 36(10):1925-1935. ] DOI: 10.11821/dlyj201710009
doi: 10.11821/dlyj201710009 |
|
[4] |
Ding Y L, Zhu Q, Lin H. An integrated virtual geographic environmental simulation framework: A case study of flood disaster simulation[J]. Geo-spatial Information Science, 2014, 17(4):190-200. DOI: 10.1080/10095020.2014.988199
doi: 10.1080/10095020.2014.988199 |
[5] |
Arifin S M N, Madey G R, Collins F H. Spatial agent-based simulation modeling in public health: design, implementation, and applications for malaria epidemiology[M]. New Jersey: John Wiley & Sons Inc, 2016. DOI: 10.1002/9781118964385
doi: 10.1002/9781118964385 |
[6] | 潘茂林, 陶海燕. JAVA-SWARM与GIS集成研究——以城市地理模拟为例[J]. 系统仿真学报, 2009, 21(18):5704-5708. |
[ Pan M L, Tao H Y. Integration technique between java-swarm and GIS on urban geo-simulation[J]. Journal of System Simulation, 2009, 21(18):5704-5708. ] DOI: CNKI:SUN:XTFZ.0.2009-18-025
doi: CNKI:SUN:XTFZ.0.2009-18-025 |
|
[7] | 黎夏, 李丹, 刘小平. 地理模拟优化系统(GeoSOS)及其在地理国情分析中的应用[J]. 测绘学报, 2017, 46(10):1598-1608. |
[ Li X, Li D, Liu X P. Geographical simulation and optimization system(GeoSOS) and its appl ication in the analysis of geographic national conditions[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1598-1608. ]DOI: CNKI:SUN:DXJZ.0.2009-08-009
doi: CNKI:SUN:DXJZ.0.2009-08-009 |
|
[8] |
Vahidnia M H, Alesheikh A A, Alavipanah S K. A multi-agent architecture for geosimulation of moving agents[J]. Journal of Geographical Systems, 2015, 17(4):353-390.DOI: 10.1007/s10109-015-0218-2
doi: 10.1007/s10109-015-0218-2 |
[9] | Sauvage S, Filatova T, Horstman E, et al. Modelling adaptive behaviour in spatial agent-based models: coastal cities and climate change [C]// International Congress on Environmental Modelling and Software, Toulouse, 2016: 18. |
[10] |
Li Z Q, Guan X F, Li R, et al. 4D-SAS: A distributed dynamic-data driven simulation and analysis system for massive spatial Agent-based modeling[J]. ISPRS International Journal of Geo-Information, 2016, 42(5):1-21. DOI: 10.3390/ijgi5040042
doi: 10.3390/ijgi5040042 |
[11] | Züfle A, Kavak H, Kim J S, et al. Towards large-scale Agent-based geospatial simulation [C]// Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation, Washington DC, 2021:1-10. |
[12] |
Lettieri N, Spagnuolo C, Vicidomini L. Distributed agent-based simulation and GIS: An experiment with the dynamics of social norms [C]// European Conference on Parallel Processing, Vienna, 2015:379-391. DOI: 10.1007/978-3-319-27308-231
doi: 10.1007/978-3-319-27308-231 |
[13] |
Francisco B, Albert G-M, Emilio L, et al. Care HPS: a high performance simulation tool for parallel and distributed agent-based modeling[J]. Future Generation Computer Systems, 2017, 68(3):59-73. DOI: 10.1016/j.future.2016.08.015
doi: 10.1016/j.future.2016.08.015 |
[14] |
Mastio M, Zargayouna M, Scémama G, et al. Distributed agent-based traffic simulations[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10(1):145-156. DOI: 10.1109/MITS.2017.2776162
doi: 10.1109/MITS.2017.2776162 |
[15] |
Simon C, Marian G, Mike H, et al. Exploitation of high performance computing in the FLAME Agent-based simulation framework [C]// IEEE International Conference on High Performance Computing & Communication, Liverpool, 2012:538-545. DOI: 10.1109/HPCC.2012.79
doi: 10.1109/HPCC.2012.79 |
[16] |
Gennaro C, Carmine S, Vittorio S. Toward the new version of D-MASON: efficiency, effectiveness and correctness in parallel and distributed agent-based simulations [C]// IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, 2016:1803-1812. DOI: 10.1109/IPDPSW.2016.52
doi: 10.1109/IPDPSW.2016.52 |
[17] |
Marc J-R, Jan K, Martin B. A coupled simulation architecture for agent-based/geohydrological modelling with NetLogo and MODFLOW[J]. Environmental Modelling and Software, 2019, 115(3):19-37. DOI: 10.1016/j.envsoft.2019.01.020
doi: 10.1016/j.envsoft.2019.01.020 |
[18] |
赵耀龙, 张珂, 彭永俊, 等. 基于地理模拟方法的昆明市空间拓展情景分析[J]. 地理研究, 2014, 33(1):119-131.
doi: 10.11821/dlyj201401011 |
[ Zhao Y L, Zhang K, Peng Y J, et al. Scenario analysis of urban growth in kunming based on geosimulation system[J]. Geographical Research, 2014, 33(1):119-131. ] DOI: 10.11821/dlyj201401011
doi: 10.11821/dlyj201401011 |
|
[19] | Lyuba M, Carole A A, Julie D. Multi-agent geospatial simulation of human interactions and behaviour in bushfires [C]// 16th International Conference on Information Systems for Crisis Response and Management, València, 2019:1-15. |
[20] |
Hua T, Jiang T. Agent-based modeling and simulation of complex distributed systems [C]// World Congress on Intelligent Control & Automation, Chongqing, 2017:416-421. DOI: 10.1109/WCICA.2008.4592960
doi: 10.1109/WCICA.2008.4592960 |
[21] |
Andreas K. Geosimulation: modeling spatial processes[M]. Berlin: Springer, 2015. DOI: 10.1007/978-3-319-00008-4_5
doi: 10.1007/978-3-319-00008-4_5 |
[22] |
林珲, 胡明远, 陈旻, 等. 从地理信息系统到虚拟地理环境的认知转变[J]. 地球信息科学学报, 2020, 22(4):662-672.
doi: 10.12082/dqxxkx.2020.200048 |
[ Lin H, Hu M Y, Chen M, et al. Cognitive transformation from geographic information system to virtual geographic environments[J]. Journal of Geo-information Science, 2020, 22(4):662-672. ] DOI: 10.12082/dqxxkx.2020.200048
doi: 10.12082/dqxxkx.2020.200048 |
|
[23] | 林珲, 黄凤茹, 闾国年. 虚拟地理环境研究的兴起与实验地理学新方向[J]地理学报, 2009, 64(1):7-20. |
[ Lin H, Huang F R, Lv G N. Development of virtual geographic environments and the new initiative in experimental geography[J]. Acta Geographica Sinica, 2009, 64(1):7-20. ] DOI: 10.3321/j.issn:0375-5444.2009.01.002
doi: 10.3321/j.issn:0375-5444.2009.01.002 |
|
[24] |
Mekni M. Integration of GIS data for visualization of virtual geospatial environments [C]// Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), Sliema, 2015:273-282. DOI: 10.1109/MCSI.2015.39
doi: 10.1109/MCSI.2015.39 |
[25] |
Mark D H, Michael R M. Amdahl's Law in the multicore era[J]. Computer, 2008, 41(7):33-38. DOI: 10.1109/HPCA.2008.4658638
doi: 10.1109/HPCA.2008.4658638 |
[26] |
Dhananjai M R. Efficient parallel simulation of spatially-explicit agent-based epidemiological models[J]. Journal of Parallel and Distributed Computing, 2016, 93(C):102-119.DOI: 10.1016/j.jpdc.2016.04.004
doi: 10.1016/j.jpdc.2016.04.004 |
[27] |
Omar R, Yann S, Philippe M. Load-balancing for large scale situated Agent-based simulations[J]. Procedia Computer Science, 2015, 51:90-99. DOI: 10.1016/j.procs.2015.05.204
doi: 10.1016/j.procs.2015.05.204 |
[28] |
Petkova A, Hughes C, Deo N, et al. Accelerating the distributed simulations of agent-based models using community detection [C]// IEEE Rivf International Conference on Computing & Communication Technologies, Hanoi, 2016:25-30. DOI: 10.1109/RIVF.2016.7800264
doi: 10.1109/RIVF.2016.7800264 |
[1] | 亢扬箫, 桂志鹏, 丁劲宸, 吴京航, 吴华意. 基于Hilbert空间分区和Geohash索引的并行Ripley's K函数[J]. 地球信息科学学报, 2022, 24(1): 74-86. |
[2] | 江锋, 唐丽玉, 林定, 陈晓玲, 冯先超, 陈崇成. 基于城市园林树木景观三维模拟的绿视率估算方法[J]. 地球信息科学学报, 2021, 23(12): 2151-2162. |
[3] | 林珲, 胡明远, 陈旻, 张帆, 游兰, 陈宇婷. 从地理信息系统到虚拟地理环境的认知转变[J]. 地球信息科学学报, 2020, 22(4): 662-672. |
[4] | 单渌铱, 王海军, 张彬, 潘鹏. 顾及土地生态安全的环鄱阳湖城市群土地利用情景模拟[J]. 地球信息科学学报, 2020, 22(3): 543-556. |
[5] | 马晓辉,周洁萍,龚建华,黄琳,李文航,邹宇玲. 面向室内应急疏散标识的VR眼动感知实验与布局评估[J]. 地球信息科学学报, 2019, 21(8): 1170-1182. |
[6] | 易超, 陈斌, 袁帅, 徐丙立. 虚拟地理环境中基于多模式的多人动作捕捉方法[J]. 地球信息科学学报, 2019, 21(3): 305-314. |
[7] | 刘君妍, 陈雅茜, 高亦远, 李创, 佘江峰. 一种基于屏幕的三维地图线状符号渲染方法[J]. 地球信息科学学报, 2018, 20(8): 1047-1054. |
[8] | 袁帅, 陈斌, 易超, 徐丙立. 虚拟地理环境中沉浸式多人协同交互技术研究及实现[J]. 地球信息科学学报, 2018, 20(8): 1055-1063. |
[9] | 唐丽玉, 王灵霞, 陈崇成, 陈琪. 生长模型驱动的单株杉木三维动态模拟[J]. 地球信息科学学报, 2015, 17(6): 668-674. |
[10] | 林珲, 游兰. 虚拟地理环境知识工程初探[J]. 地球信息科学学报, 2015, 17(12): 1423-1430. |
[11] | 朱军, 张恒. 虚拟高速铁路环境快速建模服务与案例[J]. 地球信息科学学报, 2013, 15(6): 895-901. |
[12] | 杜云虎, 陈崇成, 唐丽玉, 李界光. 一种单机多屏的时序三维地理场景同步可视化系统[J]. 地球信息科学学报, 2013, 15(2): 200-208. |
[13] | 杨海平, 沈占锋, 骆剑承, 吴炜. 海量遥感数据的高性能地学计算应用与发展分析[J]. 地球信息科学学报, 2013, 15(1): 128-136. |
[14] | 唐丽玉, 林定, 黄洪宇, 邹杰, 陈崇成, 杜云虎. 基于虚拟植物的幼龄杉木生长模拟[J]. 地球信息科学学报, 2012, 14(5): 569-575. |
[15] | 闫长青 , 岳天祥. 基于GPU的HASM动态模拟与实时渲染方法[J]. 地球信息科学学报, 2012, 14(2): 149-157. |
|