地球信息科学学报 ›› 2011, Vol. 13 ›› Issue (3): 374-382.doi: 10.3724/SP.J.1047.2011.00374

• 城市与农村发展空间格局研究 • 上一篇    下一篇

基于时空Logistic回归模型的漳州城市扩展预测分析

杨云龙, 周小成, 吴波   

  1. 福州大学福建省空间信息工程研究中心,空间数据挖掘与信息共享教育部重点实验室,福州 350002
  • 收稿日期:2010-12-04 修回日期:2011-02-06 出版日期:2011-06-25 发布日期:2011-06-15
  • 作者简介:杨云龙(1982-),男,广西桂林人,硕士研究生。主要研究方向为环境与资源遥感应用研究。 E-mail: yangyunlong9643@163.com

Urban Expansion Prediction for Zhangzhou City Based on GIS and Spatiotemporal Logistic Regression Model

YANG Yunlong, ZHOU Xiaocheng, WU Bo   

  1. Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, Spatial Information Research Center of Fujian Province, Fuzhou University, Fuzhou 350002, China
  • Received:2010-12-04 Revised:2011-02-06 Online:2011-06-25 Published:2011-06-15

摘要: 本文提出一种以时空Logistic回归模型来预测城市扩展的新方法。其首先在传统Logistic回归模型中加入空间自相关结构构建空间Logistic回归模型,然后,利用漳州市区近20年(1989-2009年)的数据,建立不同时期城市扩展模拟的多个子空间Logistic回归模型Mi,再采用一次平滑指数法综合处理这些时间序列的Mi,构建出顾及空间复杂性和时间序复杂性的时空Logistic回归预测模型。新方法一方面克服了传统Logistic回归模型法受限于预测年份影响因素数据难以获取的缺点,另一方面由于模型考虑了城市扩展的长时间序列复杂性,即综合了城市扩展不同时期影响因素不同的情况,使它更接近城市扩展的实际,因而预测精度会提高。以福建省漳州市区为例,分别运用传统Logistic回归模型方法,在传统Logistic回归模型中单独加入空间自相关结构的空间Logistic回归模型法和基于时空Logistic回归模型的新方法这3种方法,对2009年城市扩展进行了预测分析。结果表明,基于时空Logistic 模型的新方法比传统Logistic回归模型法和空间Logistic回归模型法的预测精度都要好,总体预测精度分别为81.02%、83.82%和87.00%,预测城市用地的精度从63.59%提高到67.35%和73.34%,ROC曲线下的面积AUC从0.826提高到0.883和0.924。

关键词: 空间Logistic回归模型, 扩展预测, 指数平滑法, 空间自相关, 漳州市

Abstract: We start this study aimed at building a new method of spatiotemporal logistic regression model to predict urban expansion. This method first established a space Logistic regression model by adding autocorrelation structure based on the traditional logistic regression model, then built the multiple sub-space Logistic regression model Mi of urban growth simulation of different stages by Zhangzhou City's nearly 20 years (from 1989 to 2009) data. After this work, a spatiotemporal logistic regression model which took into account the spatial complexity and temporal complexity was constructed by using single exponential smoothing to treat these time series sub-model synthetically. On one hand,this novel method has overcome the traditional shortcoming that the influencing factor data is difficult to obtain in the prediction year, on the other hand, the model considers the complexity of urban growth in the long time series, that is a combination of urban expansion in different periods of different factors situation, bring it closer to the actual urban expansion, which will improve the prediction accuracy. Zhangzhou City of Fujian Province was taken as an example in the study, and the urban expansion in 2009 was forecast by using three methods, i.e. traditional logistic regression model, space logistic regression model and spatiotemporal logistic regression model. The results showed that the prediction accuracy of the new method based on spatiotemporal logistic regression model was more better than others, for which the overall prediction accuracy were 81.02%, 83.82% and 87.0% respectively, and the sensitivity of urban land use prediction increased from 63.59% to 67.35% and 73.3%. Area AUC under the ROC curve raised in size from 0.826 to 0.883 and 0.924.

Key words: extended forecast, exponential smoothing, spatial autocorrelation, Zhangzhou City, Spatial Logistic Regression Model