[1] 岳天祥,杜正平,刘纪远. 高精度曲面建模与误差分析[J]. 自然科学进展, 2004, 14(2): 83-89.
[2] 岳天祥,杜正平. 高精度曲面建模与经典模型的误差比较分析[J]. 自然科学进展, 2007, 16(8): 986-991.
[3] 岳天祥,杜正平. 高精度曲面建模最佳表达形式的数值实验分析[J]. 地球信息科学, 2006, 8(3): 83-87.
[4] Yue T X. Surface modeling: High accuracy and high speed methods[J]. CRC Press, 2010,39-63.
[5] Davis T J. Direct methods for Sparse Linear Systems[J]. SIAM Philadelphia. 2006,85-94.
[6] Hestenes M R, Stiefel E F. Methods of conjugate gradients for solving linear systems[J]. J.Res. Nat.Bur. Stand. 1952, 49: 409-436.
[7] Golub G H, Van Loan C F. Matrix computations[J]. Posts & Telecompress. 2009,530-535.
[8] Meijerink J A, Vorst van der H A. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix[J]. Math. Comp. 1977(31):148-162.
[9] 陈传法,岳天祥,张照杰.高精度曲面模型的解算[J]. 武汉大学学报(信息科学版), 2010,35(3):365-368.
[10] Evans D J, Forrington C V D. An iterative process for optimizing symmetric successive over-relaxation[J]. The Computer Journal, 1963, 6(3): 271-273.
[11] Helfenstein R, Koko J. Parallel preconditioned conjugate gradient algorithm on GPU[J]. Journal of Computational and Applied Mathematics,2012,236(15):3584-3590. |