[1] 闾国年. 地理分析导向的虚拟地理环境:框架、结构与功能[J].中国科学,2011,41(4):549-561.
[2] 韦玉春,陈锁忠,等. 地理建模原理与方法[M].北京:科学出版社,2005,306-311.
[3] 李爽,姚静. 虚拟地理环境的多维数据模型与地理过程表达[J].地理与地理信息科学,2005,21(4):1-5.
[4] 王彦兵,吴立新,史文中. GTP模型中四面体的引入及其空间模型扩展[J].地理与地理信息科学,2003,19 (5):16-19.
[5] Rajan V T. Optimality of the Delaunay triangulation in R4[J]. Discrete & Computational Geometry, 1994,12:189-202.
[6] 赵建军,王启付. 边界一致的Delaunay四面体网格稳定生成算法[J].机械工程学报,2004,40(6):100-105.
[7] Preparata E P, Shamos M I. Computational geometry: An introduction . New York/Berlin: Springer-Verlag, 1985.
[8] Si H. On refinement of constrained Delaunay tetrahedralizations . In: Proc. of the 15th International Meshing Roundtable, 2006,509-528.
[9] Shewchuk J R. Tetrahedral mesh generation by Delaunay refinement . In: Proceedings of the 14th ACM Symposium on Computational Geometry. New York: ACM, 1998,86-95.
[10] Edelsbrunner H. Geometry and topology for mesh generation[M]. Cambridge: Cambridge University Press, 2001.
[11] Si H. Three dimensional boundary conforming Delaunay mesh generation . Institute of Mathematics, Technische Universität Berlin, 2008.
[12] Si H, Gärtner K. Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations . Proceedings of 14th International Meshing Roundtable, Sandia National Laboratories, San Diego, CA, USA 2005, 147-163.
[13] Cheng S W, Dey T K, Ramos E A, Ray T. Quality meshing for polyhedra with small angles[J]. International Journal on Computational Geometry and Applications, 2005,15:421-461.
[14] Si H. Constrained Delaunay tetrahedral mesh generation and refinement[J]. Finite Elem. Anal. Des. 2010, 46(1-2),33-46.
[15] Lewis R W, Yao Z, Gethin D T. Three dimensional unstructured mesh generation[J]: Part 3. Volume meshes. Comput. Methods Appl. Mech. Engrg., 1996,134:285-310.
[16] 宋超,关振群,顾元宪.三维约束Delaunay 三角化的边界恢复和薄元消除方法[J].计算力学学报,2004,21(2):169-176.
[17] Joe B. Construction of three-dimensional improved-quality triangulation using local transforms[J]. SLAM J. of Sci. Compt, 1995,6:1292-1307.
[18] Scott C, Joseph T, Matthew S. An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes . In: Proceedings of 7th International Meshing Roundtable, Michigan, 1998,421-436. |