[1] Ediriwickrema J, Khorram S. Hierarchical maximum-likelihood classification for improved accuracies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997 (35):810-816.
[2] Jensen R J, Lulla D K. Introductory digital image processing: A remote sensing perspective[C]. Upper Saddle River, NJ: Prentice-Hall, 2005.
[3] Bishop C M. Neural networks for pattern recognition[M]. Oxford: Clarendon Press, 1995.
[4] Benediktsson J A, Swain P H, Ersoy O K. Neural network approaches versus statistical methods in classification of multisource remote-sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990(28):550-552.
[5] Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
[6] Huang C, Davis L S, Townshend J R G. An assessment of support vector machines for land cover classification[J]. International Journal of Remote Sensing, 2002(23):725-749.
[7] Zhu G, Blumberg, D G. Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel [J]. Remote Sensing of Environment, 2002(80):233-240.
[8] Pal M, Mather P M. Support vector machines for classification in remote sensing[J]. International Journal of Remote Sensing, 2005(26):1007-1011.
[9] Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011(66):247-259.
[10] Walter V. Object-based classification of remote sensing data for change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004(58):225-238.
[11] Wang, L., Sousa, W.P., et al. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing, 2004(25): 5655-5668.
[12] Malinverni E S, Tassetti A N, Mancini A,et al. Hybrid object- based approach for land use/land cover mapping using high spatial resolution imagery[J]. International Journal of Remote Sensing, 2011(25):1025-1043.
[13] Myint S W, Gober P, Brazel A, et al. Per-pixel vs object- based classification of urban land cover extraction using high spatial resolution imagery[J]. Remote Sensing of Environment, 2011,115(5):1145-1161.
[14] Lin H. Method of image segmentation on high-resolution image and classification for land covers fourth[C]. International Conference on Natural Computation, 2008, 563-566.
[15] Vincent L, Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations[J]. N IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991(13):583:597.
[16] Xiao P. Feng X, Li H. Multispectral remotely sensed imagery segmentation based on first fundamental form[C]. IEEE Urban Remote Sensing Joint Event, 2009.
[17] Hill P R, Canagarajah C N, Bull D R. Image segmentation using a texture gradient based watershed transform [J]. IEEE Transactions on Image Processing, 2003 (12): 1618-1633.
[18] Brandt T, Paul M M. Classification methods for remotely sensed data (2nd Ed.) [M]. New York: CRC Press, 2007, 58-62.
[19] Michelson D B, Liljeberg B M, Pilesjo P. Comparison of algorithms for classifying Swedish landcover using LANDSAT TM and ERS-1 SAR data[J]. Remote Sensing of Environment, 2000(71):1-15. |