地球信息科学学报 ›› 2014, Vol. 16 ›› Issue (2): 307-313.doi: 10.3724/SP.J.1047.2014.00307

• 遥感科学与应用技术 • 上一篇    下一篇

基于对象变化矢量分析的土地利用变化检测方法研究

王丽云, 李艳, 汪禹芹   

  1. 南京大学国际地球系统科学研究所 江苏省地理信息技术重点实验室, 南京 210046
  • 收稿日期:2013-04-12 修回日期:2013-05-21 出版日期:2014-03-10 发布日期:2014-03-10
  • 通讯作者: 李 艳(1968- ),女,副教授,主要从事遥感图像处理方面的研究。E-mail:liyan@nju.edu.cn E-mail:liyan@nju.edu.cn
  • 作者简介:王丽云(1987- ),女,硕士生,主要从事遥感技术应用研究。E-mail:wangliyunwly@126.com
  • 基金资助:

    中国科学院“生态系统固碳现状、速率、机制和潜力”专项(XDA05050106);国家“863”计划“全球森林生物量和碳储量遥感估测关键技术”(2012AA120906)。

Research on Land Use Change Detection Based on an Object-oriented Change Vector Analysis Method

WANG Liyun, LI Yan, WANG Yuqin   

  1. International Institute for Earth System Science, Nanjing University, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210046, China
  • Received:2013-04-12 Revised:2013-05-21 Online:2014-03-10 Published:2014-03-10
  • Contact: 10.3724/SP.J.1047.2014.00307 E-mail:liyan@nju.edu.cn

摘要:

变化检测是资源和环境遥感应用的一个重要内容。在变化矢量分析法的基础上,本文提出采用变化矢量-主成分分析法提取研究区变化信息,首先,对不同时相的遥感影像进行差值运算得到差值影像,再对其进行主成分变换并选取主分量,最后,使用多尺度分割获取影像对象。在影像分割的基础上,采用变化矢量-主成分分析方法构建自动检测规则提取变化信息,并作精度评价。研究表明:基于对象的变化矢量-主成分分析方法不仅可克服传统的基于像元式方法难以利用空间信息的缺陷,有效避免了“椒盐”噪声,而且可将多波段差值信息经主成分变换后集中在几个累计贡献率较高的主成分分量上;同时,结合了变化矢量法与主成分分析法的优点,与单独使用变化矢量分析法相比提取精度明显提高。

关键词: 变化检测, 面向对象, 变化矢量, 主成分分析

Abstract:

Land cover/use change in Taizhou City is studied in this paper. Due to human or natural factors, land cover/use constantly changes. With the development of remote sensing technology, change detection is one of the important applications on resource and environment remote sensing. In this paper, we propose a Change Vector-PCA analysis method based on CVA to extract change information in the study area. First, we compute the relative difference between t1 and t2 remote sensing image of Taizhou to obtain the difference image, then employ PCA to this difference image and select principal components for the extraction of change information. Next, the image objects are obtained by multi-scale segmentation combining with the spectral and spatial characteristics and suitable segmentation scale. And, the change information is extracted automatically with the rules derived from a classification tree on the basis of Change Vector-PCA analysis of the objects. Last, we have an accuracy evaluation according samples which reaches the mapping requirement. The reason of missed or false detection is that some land cover types is significantly affected by the reason, such as farmland, grass. The result shows that Change Vector-PCA based on objects is more superior than the traditional methods based on pixel in terms of utilizing the spatial information and avoiding "salt" noises; and this method can compare several principal components transformed by multi-band difference change information. Change Vector-PCA combines the advantage of CVA and PCA. It is significant in improving the accuracy and automation level for change detection.

Key words: change vector, object-oriented, PCA, change detection