[1] Santos J R, Freitas C C, Araujo L S, et al. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest[J]. Remote Sensing of Environment, 2003,87(4):482-493.
[2] Steininger M. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia[J]. International Journal of Remote Sensing, 2000,21(6-7):1139-1157.
[3] 王庆,廖静娟.基于Landsat TM和ENVISAT ASAR数据的鄱阳湖湿地植被生物量的反演[J].地球信息科学学报,2010,12(2):282-291.
[4] Svoray T, Shoshany M. SAR-based estimation of areal aboveground biomass (AAB) of herbaceous vegetation in the semi-arid zone: A modification of the water-cloud model[J]. International Journal of Remote Sensing, 2002,23(19):4089-4100.
[5] 施建成,杜阳,杜今阳,等.微波遥感地表参数反演进展[J].中国科学:地球科学,2012(6):814-842.
[6] Wang H, Ouchi K. A simple moment method of forest biomass estimation from non-gaussian texture information by high-resolution polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(4):811-815.
[7] Hoekman D H, Quiñones M J. Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colobian Amazon[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000(38):685-696.
[8] 黎夏,叶嘉安,王树功,等.红树林湿地植被生物量的雷达遥感估算[J].遥感学报,2006,10(3):387-396.
[9] Inoue Y, Kurosu T, Maeno H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment, 2002,81(2):194-204.
[10] Prasad R. Retrieval of crop variables with field-based X-band microwave remote sensing of ladyfinger[J]. Advances in Space Research, 2009,43(9):1356-1363.
[11] Taconet O, Benallegue M, Vidal-Madjar D. Estimation of soil and crop parameters for wheat from airborne radar backscattering data in C and X band[J]. Remote Sensing of Environment, 1994(50):287-294.
[12] Stephen L D, Leslie A M, Gerald P L. Microwave backscatter and attenuation dependence on leaf area index for flooded rice fields[J]. IEEE Transaction on Geoscience and Remote Sensing, 1995,33(3):807-810.
[13] Moreau S, Toan T L. Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing live stock management[J]. Remote Sensing of Environment, 2003(84):477-492.
[14] Hill M J, Donald G E, Vickery P J. Relating radar backscatter to biophysical properties of temperate perennial grassland[J]. Remote Sensing of Environment, 1999(67):15-31.
[15] Lopes A, Touzi R, Nezry E.Adaptive speckle filters and scene heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990,28(6):992-1000.
[16] Vermote E F, Tanré D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(3):675-686.
[17] Ulaby F T, Sarabandi K, McDonald K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990,11(7):1223-1253.
[18] Roo R D De, Du Y, Ulaby F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(4):864-872.
[19] He B, Quan X, Xing M. Retrieval of leaf area index in alpine wetlands using a two-layer canopy reflectance model[J]. International Journal of Applied Earth Observation and Geoinformation, 2013(21):78-91.
[20] Imhoff M L. Radar backscatter and biomass saturation: ramifications for global biomass inventory[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(2):511-518. |