地球信息科学学报 ›› 2013, Vol. 15 ›› Issue (6): 902-910.doi: 10.3724/SP.J.1047.2014.00902

• 遥感科学与应用技术 • 上一篇    下一篇

一种高分辨率遥感影像的最优分割尺度自动选取方法

殷瑞娟, 施润和, 李镜尧   

  1. 华东师范大学地理信息科学教育部重点实验室, 华东师范大学与中国科学院对地观测与数字地球科学中心环境遥感与数据同化联合实验室, 上海 200241
  • 收稿日期:2013-06-21 修回日期:2013-07-24 出版日期:2013-12-25 发布日期:2013-12-25
  • 通讯作者: 施润和(1979-),男,上海人,博士,副教授,主要从事定量遥感模型与验证研究。E-mail:rhshi@geo.ecnu.edu.cn E-mail:rhshi@geo.ecnu.edu.cn
  • 作者简介:殷瑞娟(1988-),女,上海人,硕士生,主要从事遥感图像与GIS应用。E-mail:cherryin88@hotmail.com
  • 基金资助:

    上海市科委世博专项(13231203804);国家自然科学基金项目(41201358)。

Automatic Selection of Optimal Segmentation Scale of High-resolution Remote Sensing Images

YIN Ruijuan, SHI Runhe, LI Jingyao   

  1. Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University; Joint Laboratory for Environmental Remote Sensing and Data Assimilation, ECNU and CEODE, Shanghai 200241, China
  • Received:2013-06-21 Revised:2013-07-24 Online:2013-12-25 Published:2013-12-25

摘要:

随着卫星遥感影像空间分辨率的不断提高,面向对象的地物信息提取技术发展迅速。图像分割作为面向对象分类的关键步骤之一,其分割尺度的参数设置目前仍以分类者的多次尝试和主观判断为依据,效率较低且分割结果因人而异。本文以WorldView2影像数据为例,结合当前现有的理论和方法,实现了一种计算机可自动进行主成分变换的高分辨率遥感图像全局最优分割尺度选取算法。改进后的算法以主成分变换所得的主成分影像作为图像分割的编辑层,主成分的特征值百分比作为计算异质性参数和分割质量评价值的权重,自动计算当分割尺度从20增至200时分割图像的分割质量评价值(GS),解决了人为确定图像分割编辑层的片面性问题,并利用三次样条插值选取出GS最高值所对应的尺度即为最优分割尺度。结果表明,该最优分割尺度选取方法可有效避免人为确定分割尺度的主观性、片面性和低效性,提升了高分辨率影像分割质量。

关键词: 图像分割, WorldView2, 主成分变换, 最优分割尺度选择, 面向对象, Moran’s I指数

Abstract:

With the increasing of spatial resolution of imaging sensors, object-oriented feature information extraction technology is developing rapidly. The advantages of object-based classification over the traditional pixel-based approach are well documented. Image segmentation is a key step to realize the object-oriented classification. The choice of scale parameter is very important and has a great influence on the segmentation effectiveness, but the choice of scale parameter is still decided by the repeated attempts and subjective judgments of operator, which are lacking in stability and reliability. Thus, an objective and unsupervised method is proposed for selecting optimal parameter for image segmentation to ensure best quality results. In this paper, WorldView 2 as data source, a new method based on principal component transform is introduced to choose an optimal parameter for image segmentation. We choose principal component images as the editor of image segmentation and eigenvalues as the weights of heterogeneity f and segmentation global score. Segmentation images, ranging from 20 to 200 scale, step by 10, are created in Definiens Professional 8.7. Then, the global intra-segment and inter-segment heterogeneity indexes are taken into account to identify the optimal segmentation scale (i. e. the highest GS value) by using the cubic spline interpolation function method. After comparison with the results of image segmentation based on traditional three bands, image segmentation effect obtained by principal component transform has obvious advantages. As a result, the method in this paper can effectively avoid the subjectivity of the artificial segmentation, one-sidedness and inefficiency, improve the quality of high-resolution image segmentation. The method also makes a good preprocessing work for later image classification and information extraction.

Key words: image segmentation, Moran’s Index, principal component transform, WorldView2, optimal segmentation scale selection, object-oriented