地球信息科学学报 ›› 2014, Vol. 16 ›› Issue (6): 965-970.doi: 10.3724/SP.J.1047.2014.00965
马万栋1(), 王桥1, 吴传庆1, 殷守敬1, 邢前国2, 朱利1, 吴迪1
收稿日期:
2013-10-29
修回日期:
2014-01-21
出版日期:
2014-11-10
发布日期:
2014-11-01
作者简介:
作者简介:马万栋(1977- ), 男, 山东陵县人, 博士, 主要从事水环境遥感方面研究。E-mail:
基金资助:
MA Wandong1,*(), WANG Qiao1, WU Chuanqing1, YIN Shoujing1, XING Qianguo2, ZHU Li1, WU Di1
Received:
2013-10-29
Revised:
2014-01-21
Online:
2014-11-10
Published:
2014-11-01
Contact:
MA Wandong
E-mail:mawdcn@sohu.com
About author:
*The author: CHEN Nan, E-mail:
摘要:
叶绿素浓度是水体富营养化状态的重要指标,也是水色遥感反演的水质参数之一。水体中叶绿素浓度的遥感反演主要是建立实测光谱和实测水质参数二者之间的关系模型,利用遥感影像进行叶绿素浓度的信息提取。传统的叶绿素浓度遥感反演受区域性和季节性的影响,反演精度不高,而且反演模型不具普适性,需对叶绿素光谱特征进行分析,建立高精度的反演模型。本文采用Hydrolight数据模拟了不同叶绿素浓度(1~200 µg·L-1)的水体在可见光近红外的反射波谱曲线,通过分析叶绿素的光谱特征选取了特征波段或波段组合,并建立了叶绿素浓度反演模型。研究表明,除反射峰波长模型外,反射峰面积模型、三波段模型、红光线高度模型等均能较好地反演叶绿素浓度。在不同叶绿素反演模型中,除红光线模型外,最优的是反射峰面积模型,其决定系数为0.9689,反演误差为25.25 µg·L-1;其次是三波段模型,其决定系数为0.9637,反演误差为10.66 µg·L-1。究其原因,三波段模型考虑了水体中非色素悬浮物、黄色物质及水体后向散射对叶绿素浓度反演造成的影响;反射峰面积模型除此之外还综合考虑了叶绿素散射效率的影响。
马万栋, 王桥, 吴传庆, 殷守敬, 邢前国, 朱利, 吴迪. 基于反射峰面积的水体叶绿素遥感反演模拟研究[J]. 地球信息科学学报, 2014, 16(6): 965-970.DOI:10.3724/SP.J.1047.2014.00965
MA Wandong,WANG Qiao,WU Chuanqing,YIN Shoujing,XING Qianguo,ZHU Li,WU Di. Research on Chlorophyll-a Retrieval Simulation in Waters Based on the Normalized Peak Area[J]. Journal of Geo-information Science, 2014, 16(6): 965-970.DOI:10.3724/SP.J.1047.2014.00965
[1] | O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research, 1998,103(C11):24937-24953. |
[2] | McClain C R, Feldman G C, Hooker S B. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series[J]. Deep-Sea Research Part II, 2004,51(1-3):5-42. |
[3] | Stramski D, Bricaud A, Morel A.Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community[J]. Applied Optics, 2001,40(18):2929-2945. |
[4] | Dall’Olmo G, Gitelson A A, Rundquist D C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters[J]. Geophysical Research Letters, 2003,30(18):1938-1941. |
[5] | Gitelson A A, Schalles J F, Hladik C M.Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study[J]. Remote Sensing of Environment, 2007,109(4):464-472. |
[6] | Gower J F R, Doerffer R, Borstad G A. Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS[J]. International Journal of Remote Sensing, 1999,20(9):1771-1786. |
[7] | Vasilkov A, Kopelevich O.Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer[J]. Oceanology, 1982,22(5):697-701. |
[8] | Xing Q, Chen C, Shi H, et al.Estimation of chlorophyll-a concentrations in the Pearl River Estuary using in-situ hyperspectral data: A case study[J]. Marine Technology Society Journal, 2008,42(4):22-27. |
[9] | Stumpf R P, Tyler M A.Satellite detection of bloom and pigment distributions in estuaries[J]. Remote Sensing of Environment, 1988,24(3):358-404. |
[10] | Gons H J, Rijkeboer M, Ruddick K G.A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters[J]. Journal of Plankton Research, 2002,24(9):947-951. |
[11] | Ruddick K G, Gons H J, Rijkeboer M, et al.Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties[J]. Applied Optics, 2001,40(21):3575-3585. |
[12] | Gitelson A A, Vina A, Ciganda V, et al.Remote estimation of canopy chlorophyll content in crops[J]. Geophysical Research Letters, 2005,32(8):403-406. |
[13] | Gitelson A A, Vina A, Arkebauer T J, et al. Remote estimation of leaf area index and green leaf biomass in maize canopies[J]. Geophysical Research Letters, 2003,30(5):1248-1251. |
[14] | Gitelson A A, Dall'Olmo G, Moses W, et al. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation[J]. Remote Sensing of Environment, 2008,112(9):3582-3593. |
[15] | Gitelson A, Keydan G, Shishkin V.Inland water quality assessment from satellite data in visible range of the spectrum[J]. Soviet Remote Sensing, 1985,6:28-36. |
[16] | Chen J, Zhang X, Quan W.Retrieval chlorophyll-a concentration from coastal waters: three-band semi-analytical algorithms comparison and development[J]. Optics Express, 2013,21(7):9024-9042. |
[17] | 马万栋,邢前国,张渊智,等.水体红波段反射光谱对叶绿素浓度变化的响应[J].光谱学与光谱分析,2010,30(2):313-317. |
[18] | Gordon H R, Brown O B, Evans R H, et al.A semianalytic radiance model of ocean color[J]. Journal of Geophysical Research, 1988, 93(D9):10909-10924. |
[19] | Gordon H R, Brown O B, Jacobs M M.Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean[J]. Applied Optics, 1975,14(2):417-427. |
[20] | Morel A, Gentili B.Diffuse reflectance of oceanic waters. II. Bidirectional aspects[J]. Applied Optics, 1993, 32(33):6864-6864. |
[21] | Garver S A, Siegel D A.Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea[J]. Journal of Geophysical Research, 1997,102(C2):18607-18625. |
[22] | Zaneveld J R V, Twardowski M J, Barbard A, et al. Introduction to radiative transfer. Remote Sensing of Coastal Aquatic Environments[M]. Dordrecht: Springer, 2005. |
[23] | Zaneveld J R, Barnard A, Boss E.Theoretical derivation of the depth average of remotely sensed optical parameters[J]. Optics Express, 2005,13(22):9052-9061. |
[24] | Aas E, Højerslev N K.Analysis of underwater radiance observations: Apparent optical properties and analytic functions describing the angular radiance distribution[J]. Journal of Geophysical Research, 1999,104(C4):8015-8024. |
[25] | Devred E, Fuentes-Yaco C, Sathyendranath S, et al.A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from Sea WiFS data[J]. Indian Journal of Marine Science, 2005,34(4):356-367. |
[26] | Ma W, Xing Q, Chen C, et al.Using the normalized peak area of remote sensing reflectance in the near-infrared region to estimate total suspended matter[J]. International Journal of Remote Sensing, 2011,32(22):7479-7486. |
[27] | Gower J, King S.Validation of chlorophyll fluorescence derived from MERIS on the west coast of Canada[J]. International Journal of Remote Sensing, 2007,28(3-4):625-635. |
[28] | Zhao D, Zhang F, Yang J, et al.The optimized spectral bands ratio for the relation of sun-induced chlorophyll fluorescence height with high chlorophyll a concentration of algal bloom waters[J]. Acta Oceanologica Sinica, 2005,27(6):146-153. |
[1] | 王艳杰, 王卷乐, 魏海硕, Altansukh Ochir, Davaadorj Davaasuren, Sonomdagva Chonokhuu. 基于稀疏样点的蒙古国产草量估算方法研究[J]. 地球信息科学学报, 2020, 22(9): 1814-1822. |
[2] | 陈辉, 厉青, 王中挺, 马鹏飞, 李营, 赵爱梅. 一种基于FY3D/MERSI2的AOD遥感反演方法[J]. 地球信息科学学报, 2020, 22(9): 1887-1896. |
[3] | 刘卫华, 王思远, 马元旭, 申明, 游永发, 海凯, 吴林霖. 一种湿地河流叶绿素a遥感反演方法[J]. 地球信息科学学报, 2020, 22(10): 2062-2077. |
[4] | 邓超, 陈志彪, 陈海滨, 陈志强. 南方红壤侵蚀区长汀县不同生态恢复年限下芒萁叶绿素含量的高光谱估算模型[J]. 地球信息科学学报, 2019, 21(6): 948-957. |
[5] | 葛亚宁, 徐新良, 李静, 蔡红艳, 张学霞. 北京城市建筑密度分布对热岛效应的影响研究[J]. 地球信息科学学报, 2016, 18(12): 1698-1706. |
[6] | 刘洋, 刘荣高. 基于LTDR AVHRR和MODIS观测的全球长时间序列叶面积指数遥感反演[J]. 地球信息科学学报, 2015, 17(11): 1304-1312. |
[7] | 焦桐, 刘荣高, 刘洋, 陈镜明. 林下植被遥感反演研究进展[J]. 地球信息科学学报, 2014, 16(4): 602-608. |
[8] | 陈芸芝, 郑高强, 汪小钦, 陈曦. 基于GSM01融合的多传感器数据叶绿素a浓度反演[J]. 地球信息科学学报, 2013, 15(6): 911-917. |
[9] | 刘洋, 刘荣高, 陈镜明, 程晓, 郑光. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013, 15(5): 734-743. |
[10] | 平博, 苏奋振, 周成虎, 高义. 局部SVT算法的遥感反演场数据恢复实验分析[J]. 地球信息科学学报, 2011, 13(5): 651-655. |
[11] | 杨煜, 李云梅, 王桥, 乐成峰, 孙德勇, 黄昌春. 富营养化的太湖水体叶绿素a浓度模型反演[J]. 地球信息科学学报, 2009, 11(5): 597-603. |
[12] | 焦红波, 金继业, 刘振民, 查勇, 李四海, 李云梅, 黄家柱. 湖泊水体叶绿素a含量估算的波段宽度变化影响分析——以太湖为例[J]. 地球信息科学学报, 2008, 10(6): 787-791. |
[13] | 黄海清, 何贤强, 王迪峰, 潘德炉. 神经网络法反演海水叶绿素浓度的分析[J]. 地球信息科学学报, 2004, 6(2): 31-36,57. |
|