地球信息科学学报 ›› 2014, Vol. 16 ›› Issue (6): 989-996.doi: 10.3724/SP.J.1047.2014.00989
收稿日期:
2014-03-17
修回日期:
2014-04-18
出版日期:
2014-11-10
发布日期:
2014-11-01
通讯作者:
王世新
E-mail:yanfl@radi.ac.cn;wangsx@radi.ac.cn
作者简介:
作者简介:阎福礼(1973-),男,博士,副研究员,主要从事定量反演研究。E-mail:
基金资助:
YAN Fuli1(), LIU Shaofei1,2, WANG Shixin1,*(
), ZHOU Yi1
Received:
2014-03-17
Revised:
2014-04-18
Online:
2014-11-10
Published:
2014-11-01
Contact:
WANG Shixin
E-mail:yanfl@radi.ac.cn;wangsx@radi.ac.cn
About author:
*The author: CHEN Nan, E-mail:
摘要:
浮游藻类的后向散射是水体光谱构成的重要组成部分,作为水体辐射传输模型中的重要参数,高精度的藻类后向散射系数对水体叶绿素a浓度的遥感反演精度至关重要。本文以简化的辐射传输模型-生物光学模型为基础,尝试性分离了太湖浮游藻类的后向散射系数。通过藻类后向散射规律分析,建立了浮游藻类吸收、后向散射特征的叶绿素a反演模型,改善了叶绿素a浓度的遥感反演精度。分析表明:藻类颗粒物的后向散射系数与吸收系数之间存在反比关系,且在560 nm、700 nm附近存在明显的散射峰,与叶绿素a浓度之间相关性显著;低密度藻类水体总悬浮颗粒的后向散射以非色素颗粒为主导,适合采用经典的指数模型模拟后向散射系数,而藻类密度较高的富营养化水体,水体总悬浮颗粒的后向散射以藻类颗粒为主导,传统的指数模型已不适用;采用分离藻类后向散射系数的方法,使得叶绿素a浓度的反演值与真实值相关系数从0.66提高到0.98,相对误差从55%降低到38%,均方根误差(RMSE)也由60.95 μg/L降低至13.98 μg/L。其真实性检验表明,与经典指数模型方法相比,利用藻类颗粒后向散射分离方法反演叶绿素a浓度,能够显著改善反演精度。
阎福礼, 刘韶菲, 王世新, 周艺. 太湖浮游藻类的后向散射分离及其叶绿素a浓度反演[J]. 地球信息科学学报, 2014, 16(6): 989-996.DOI:10.3724/SP.J.1047.2014.00989
YAN Fuli,LIU Shaofei,WANG Shixin,ZHOU Yi. Phytoplankton Backscattering Coefficients Partitioning and Its Applications in Retrieving Chlorophyll-a Concentrations in Taihu Lake[J]. Journal of Geo-information Science, 2014, 16(6): 989-996.DOI:10.3724/SP.J.1047.2014.00989
[33] | 孙德勇,李云梅,王桥,等.太湖水体中悬浮颗粒物的比吸收光谱特性及其参数化分析[J].环境科学学报,2009,29(9):1820-1829. |
[34] | 李俊生,张兵,张霞,等.一种计算水体中悬浮物后向散射系数的方法[J].遥感学报,2008,12(2):193-198. |
[35] | Kahru M, Mitchell B G.Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current[J]. International Journal of Remote Sensing, 1999,20(17):3423-3429. |
[36] | Darecki M, Stramski D.An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea[J]. Remote Sensing of Environment, 2004,89(3):326-350. |
[37] | Darecki M, Weeks A, Sagan S, et al.Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms[J]. Continental Shelf Research, 2003,23(3):237-250. |
[38] | 姜广甲,周琳,马荣华,等.浑浊Ⅱ类水体叶绿素a浓度遥感反演(Ⅱ):MERIS 遥感数据的应用[J].红外与毫米波学报,2013,32(4):372-378. |
[1] | 马荣华,唐军武,段洪涛,等.湖泊水色遥感研究进展[J].湖泊科学,2009,21(2):143-158. |
[2] | 杨硕,王世新,周艺,等.基于光谱匹配的内陆水体反演算法[J].光谱学与光谱分析,2010,30(11):3056-3060. |
[3] | Hakvoort H, De Haan J, Jordans R, et al.Towards airborne remote sensing of water quality in The Netherlands—validation and error analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2002,57(3): 171-183. |
[4] | Ma R, Tang J, Dai J, et al.Absorption and scattering properties of water body in Taihu Lake, China: Absorption[J]. International Journal of Remote Sensing, 2006,27(19):4277-4304. |
[5] | 姜玲玲,赵冬至,王林,等.水体后向散射特性研究进展[J].遥感技术与应用,2013,28(1):150-156. |
[6] | Lee Z P, Carder K L, Arnone R A.Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters[J]. Applied optics, 2002,41(27):5755-5772. |
[7] | 李云梅,黄家柱,韦玉春,等.用分析模型方法反演水体叶绿素的浓度[J].遥感学报,2006,10(2):169-175. |
[8] | Carder K L, Steward R G, Paul J H, et al.Relationships between chlorophyll and ocean color constituents as they affect remote-sensing reflectance models[J]. Limnology and Oceanography, 1986,31(2):403-413. |
[9] | Carder K L, Hawes S K, Baker K A, et al.Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products[J]. Journal of Geophysical Research: Oceans (1978-2012), 1991,96(C11):20599-20611. |
[10] | Morel A, Ahn Y H.Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters[J]. Journal of Marine Research, 1990,48(1):145-175. |
[11] | Sathyendranath S, Prieur L, Morel A.A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters[J]. International Journal of Remote Sensing, 1989,10(8):1373-1394. |
[12] | Pierson D C, Strömbeck N.A modelling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish Great Lakes[J]. Geophysica, 2000,36(1-2):177-202. |
[13] | Bricaud A, Morel A.Light attenuation and scattering by phytoplanktonic cells: A theoretical modeling[J]. Applied Optics, 1986,25(4):571-580. |
[14] | 周雯,曹文熙,李彩,等.由吸收系数和粒度分布计算浮游植物的散射光谱特征[J].光学学报,2009,28(8):1429-1433. |
[15] | Kutser T.Estimation of water quality in turbid inland and coastal waters by passive optical remote sensing[D]. Estonia: Dissertationes Geophysicales Universitas Tartuensis, 1997. |
[16] | 李俊生. 高光谱遥感反演内陆水质参数分析方法研究—以太湖为例[D].北京:中国科学院遥感应用研究所,2007. |
[17] | 孔繁翔,马荣华,高俊峰.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学,2009,21(3):314-328. |
[18] | 唐军武,田国良,汪小勇,等.水体光谱测量与分析I: 水面以上法[J].遥感学报,2004,8(1):37-44. |
[19] | Mueller J L, Fargion G S, McClain C R, et al. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI: Special Topics in Ocean Optics Protocols, Part 2[R]. NASA Report 211621, 2003,1-36. |
[20] | Dekker A G, Peters S W M. The use of the Thematic Mapper for the analysis of eutrophic lakes: A case study in the Netherlands[J]. International Journal of Remote Sensing, 1993,14(5):799-821. |
[21] | Gordon H R, Brown O B, Evans R H, et al.A semianalytic radiance model of ocean color[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1988,93(D9):10909-10924. |
[22] | Morel A, Gentili B.Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution[J]. Applied optics, 1991,30(30):4427-4438. |
[23] | Morel A, Gentili B.Diffuse reflectance of oceanic waters. II Bidirectional aspects[J]. Applied Optics, 1993,32(33):6864-6879. |
[24] | 扶卿华. 太湖水体光谱响应机理与水质参数反演研究[D].北京:中国科学院遥感应用研究所,2008. |
[25] | Pope R M, Fry E S.Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements[J]. Applied optics, 1997,36(33):8710-8723. |
[26] | Smith R C, Baker K S.Optical properties of the clearest natural waters (200~800 nm)[J]. Applied optics, 1981,20(2):177-184. |
[27] | 朱建华,李铜基.黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究[J].海洋技术,2004,23(2):7-13. |
[28] | Roesler C S, Perry M J, Carder K L.Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters[J]. Limnol.Oceanogr, 1989,34(8):1510-1523. |
[29] | 郝景燕,马荣华,段洪涛,等. 太湖水体吸收分解(Ⅰ):悬浮颗粒与浮游植物色素的分离[J]. 湖泊科学,2010(3):337-348. |
[30] | Forget P, Ouillon S, Lahet F, et al.Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters[J]. Remote Sensing of Environment, 1999,68(3):264-272. |
[31] | 俞宏,蔡启铭,吴敬禄.太湖水体吸收系数与散射系数的特征研究[J].水科学进展,2003,14(1):46-49. |
[32] | Hoogenboom H J, Dekker A G, Althuis I J A. Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters[J]. Remote Sensing of Environment, 1998,65(3):333-340. |
[39] | 黄昌春,李云梅,徐良将,等.内陆水体叶绿素反演模型普适性及其影响因素研究[J].环境科学,2013,34(2):525-531. |
[1] | 李玉, 李奕燃, 王光辉, 石雪. 基于加权指数函数模型的高光谱图像分类方法[J]. 地球信息科学学报, 2020, 22(8): 1642-1653. |
[2] | 关庆锋, 任书良, 姚尧, 梁迅, 周剑锋, 袁泽皓, 戴良洋. 耦合手机信令数据和房价数据的城市不同经济水平人群行为活动模式研究[J]. 地球信息科学学报, 2020, 22(1): 100-112. |
[3] | 宋小冬, 王园园, 杨钰颖, 张开翼, 钮心毅. 通勤距离对职住分离的统计验证[J]. 地球信息科学学报, 2019, 21(11): 1699-1709. |
[4] | 杨任飞, 罗红霞, 周盛, 程玉丝, 陈婧祎, 向海燕, 雷茜. 夜间灯光数据驱动的成渝城市群空间形成过程重建及分析[J]. 地球信息科学学报, 2017, 19(5): 653-661. |
[5] | 段永超, 孟凡浩, 刘铁, 罗敏, 张军峰, 包安明. 昆仑山提孜那甫河流域雨雪分离的温度条件分析[J]. 地球信息科学学报, 2017, 19(12): 1661-1669. |
[6] | 申琳, 曾琪明, 焦健. 机载SAR干涉定标参数分离式解算方法研究[J]. 地球信息科学学报, 2015, 17(7): 862-870. |
[7] | 行敏锋, 何彬彬. 干旱区草原地上植被生物量估算——以乌图美仁大草原芦苇植被为例[J]. 地球信息科学学报, 2014, 16(2): 335-340. |
[8] | 王庆, 廖静娟. 基于Landsat TM和ENVISAT ASAR数据的鄱阳湖湿地植被生物量的反演[J]. 地球信息科学学报, 2010, 12(2): 282-291. |
[9] | 张远飞, 杨自安, 张普斌, 石菲菲, 张建国. 高(多)光谱数据的背景-异常子空间模型研究[J]. 地球信息科学学报, 2009, 11(3): 282-291. |
[10] | 魏小兰, 李震, 陈权. S波段雷达数据反演土壤水分的模拟分析和验证[J]. 地球信息科学学报, 2008, 10(1): 97-101,108. |
[11] | 王天星, 陈松林, 马娅. 基于改进线性光谱分离模型的植被覆盖度反演[J]. 地球信息科学学报, 2008, 10(1): 114-120. |
[12] | 石伟伟, 钟耳顺, 蔡阳军. “数字房产”时空数据模型的建立与应用[J]. 地球信息科学学报, 2006, 8(3): 12-16. |
|