地球信息科学学报 ›› 2015, Vol. 17 ›› Issue (9): 1022-1028.doi: 10.3724/SP.J.1047.2015.01022

• • 上一篇    下一篇

基于工程数据的建筑物构件提取方法与应用分析

贾明元1,5(), 周良辰2,3,4, 闾国年2,3,4, 万庆1,4,*()   

  1. 1. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
    2. 南京师范大学虚拟地理环境教育部重点实验室,南京 210023
    3. 江苏省地理环境演化国家重点实验室培育建设点,南京 210023
    4. 江苏省地理信息资源开发与利用协同创新中心,南京 210023
    5. 中国科学院大学,北京 100049
  • 收稿日期:2015-01-07 修回日期:2015-03-25 出版日期:2015-09-10 发布日期:2015-09-07
  • 通讯作者: 万庆 E-mail:jiamy@lreis.ac.cn;wanq@lreis.ac.cn
  • 作者简介:

    作者简介:贾明元(1988-),男,硕士生,研究方向为建筑三维自动建模。E-mail: jiamy@lreis.ac.cn

  • 基金资助:
    国家高科技研究发展计划(“863”计划)(2013AA122302);江苏省测绘地理信息科研项目(JSCHKY201404);国家自然科学基金青年基金项目(41301415);江苏高校优势学科建设工程项目

Analysis of Methods for Building Components Information Extraction Based on Engineering Data

JIA Mingyuan1,5(), ZHOU Liangchen2,3,4, LV Guonian2,3,4, WAN Qing1,4,*()   

  1. 1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    2. Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
    3. State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China
    4. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
    5. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-01-07 Revised:2015-03-25 Online:2015-09-10 Published:2015-09-07
  • Contact: WAN Qing E-mail:jiamy@lreis.ac.cn;wanq@lreis.ac.cn
  • About author:

    *The author: SHEN Jingwei, E-mail:jingweigis@163.com

摘要:

随着智慧城市的不断发展,建筑三维模型及其应用研究也从建筑外表层深入到建筑内部环境中。建筑工程数据包含了建筑设计施工阶段中丰富的建筑构件信息,是建筑建模和应用分析的良好数据源。目前,建筑工程数据可划分为非结构化数据、半结构化数据和结构化数据3类。本文从识别方法、提取内容和应用目标等方面对非结构化和结构化的建筑工程数据提取方法进行了分析,并结合国家标准和行业软件对半结构化数据的图层规范和几何图元特征进行研究。半结构化数据在我国建筑信息化现状下具有极大的应用优势,必将成为智慧城市中建筑物数据库建设的重要数据源。

关键词: 建筑构件, 建筑工程数据, 对象识别, 信息提取

Abstract:

Building is an important part of city. With the development of Smart City, 3D building model and its applications are going further from the external into the internal environment. Building engineering data contain rich information about building components throughout architecture design and construction process. They are good sources for building modeling and related applications. In this paper, building engineering data are divided into unstructured data, semi-structured data and structured data according to the data development status. The research status of information extraction from unstructured data and structured data are summarized from different aspects, including object recognition methods, extracted contents and application aims. Furthermore, the specification of layers and geometric primitive features for semi-structured data are studied based on the national and industry standards. In conclusion, the standardized layer information reduces the complexity of semi-structured data and assists the process of object recognition and information extraction. With its abundant sources and lower complexity, semi-structured data is becoming an important data source for the construction of building database in Smart City.

Key words: building components, building engineering data, object recognition, information extraction