地球信息科学学报 ›› 2015, Vol. 17 ›› Issue (10): 1224-1233.doi: 10.3724/SP.J.1047.2015.01224
李龙1,2(), 施润和1,2,3*(
), 张璐1,2, 张颉4, 周聪1,2, 徐彦平5, 高炜1,2,3
收稿日期:
2014-12-24
修回日期:
2015-02-26
出版日期:
2015-10-10
发布日期:
2015-10-10
作者简介:
作者简介:李龙(1988-),男,硕士生,主要从事大气与环境遥感方面研究。E-mail:
基金资助:
LI Long1,2(), SHI Runhe1,2,3,*(
), ZHANG Lu1,2, ZHANG Jie4, ZHOU Cong1,2, XU Yanping5, GAO Wei1,2,3
Received:
2014-12-24
Revised:
2015-02-26
Online:
2015-10-10
Published:
2015-10-10
Contact:
SHI Runhe
E-mail:lennonrs@126.com;rhshi@geo.ecnu.edu.cn
About author:
*The author: CHEN Nan, E-mail:
摘要:
气溶胶光学厚度(AOD)表征气溶胶对光的衰减作用,体现大气混浊度或大气中气溶胶总含量,其卫星产品是研究近年来不断恶化的大气环境与空气质量的良好数据源。AOD卫星产品种类较多,但数据存在较大的不确定性;气溶胶全球监测网(AERONET)的地基数据精度高,但空间覆盖度较差。泛克里金法(UK)能在数据融合过程中更多地考虑描述对象的空间相关性,并且简单易行、结果可靠。因此,本文采用该方法,结合二次多项式波段插值法和回归分析方法,在AERONET AOD数据的基础上,对2008年11月华东地区臭氧监测仪(OMI)和中分辨率成像光谱仪(MODIS)的AOD产品进行了融合。结果表明:二次多项式的AOD波段插值方法,能提供比Angstrom波长指数法更为精准的AOD插值结果;AOD融合产品的空间分辨率高于OMI AOD,覆盖率大于OMIAOD和MODIS AOD,且其精度优于这2种AOD卫星产品;融合产品图显示,2008年11月,华东地区的AOD总体呈现南低北高的趋势,高值区主要分布在长江三角洲部分地区、安徽东北部、苏鲁交界处,以及山东西部;低值区主要为江苏以南大部。相比于前人研究,本文证实了AERONET AOD站点数据少、融合的数据源(卫星AOD产品)过境时间不一致的情况下,UK方法仍然有效。本文提出的融合系统,可为相关研究提供空间覆盖更全、精度更高的AOD数据。
李龙, 施润和, 张璐, 张颉, 周聪, 徐彦平, 高炜. 华东地区MODIS与OMI气溶胶光学厚度数据融合[J]. 地球信息科学学报, 2015, 17(10): 1224-1233.DOI:10.3724/SP.J.1047.2015.01224
LI Long,SHI Runhe,ZHANG Lu,ZHANG Jie,ZHOU Cong,XU Yanping,GAO Wei. Data Fusion of MODIS AOD and OMIAOD over East China Using Universal Kriging[J]. Journal of Geo-information Science, 2015, 17(10): 1224-1233.DOI:10.3724/SP.J.1047.2015.01224
表2
二次多项式法和Angstrom波长指数法AOD波段插值结果比较(波长单位:nm)"
传感器 | 二次多项式法 | Angstrom波长指数法 | |||||
---|---|---|---|---|---|---|---|
插值波长 | 结果波长 | MAE | 插值波长 | 结果波长 | MAE | ||
OMI | 342.5, 388, 442 | 483.5 | 0.001 | 342.5, 388 | 483.5 | 0.019 | |
342.5, 442, 483.5 | 388 | 0.001 | 342.5, 483.5 | 388 | 0.009 | ||
AERONET | 440, 500, 675 | 870 | 0.010 | 440, 675 | 870 | 0.017 | |
440, 500, 870 | 675 | 0.007 | 440, 870 | 675 | 0.014 |
[1] | Andreae M O.Climatic effects of changing atmospheric aerosol levels[J]. World survey of climatology, 1995,16:347-398. |
[2] | 罗宇翔,陈娟,郑小波.近10年中国大陆MODIS遥感气溶胶光学厚度特征[J].生态环境学报,2012,21(5):876-883. |
[3] | Hutchison K D, Faruqui S J, Smith S.Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses[J]. Atmospheric Environment, 2008,42(3):530-543. |
[4] | Hutchison K D, Smith S, Faruqui S J.Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system[J]. Atmospheric Environment, 2005,39(37):7190-7203. |
[5] | Schaap M, Apituley A, Timmermans R M A, et al. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands[J]. Atmospheric Chemistry and Physics, 2009,9(3):909-925. |
[6] | Yao L, Lu N, Jiang S.Artificial neural network (ANN) for multi-source PM2.5 Estimation using surface, MODIS, and meteorological data[C]. 2012 IEEE International Conference on Biomedical Engineering and Biotechnology, 2012:1228-1231. |
[7] | Zhao Q, Gao W, Xiang W, et al.Analysis of air quality variability in Shanghai using AOD and API data in the recent decade[J]. Frontiers of Earth Science, 2013,7(2):1-10. |
[8] | Gupta P, Patadia F, Christopher S A.Multisensor data product fusion for aerosol research[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(5):1407-1415. |
[9] | Nirala M.Technical Note: Multi-sensor data fusion of aerosol optical thickness[J]. International Journal of Remote Sensing, 2008,29(7):2127-2136. |
[10] | Xu Q, Obradovic Z, Han B, et al.Improving aerosol retrieval accuracy by integrating AERONET, MISR and MODIS data[C]. 8th IEEE International Conference on Information Fusion, 2005:1-7. |
[11] | Chatterjee A, Michalak A M, Kahn R A, et al.A geostatistical data fusion technique for merging remote sensing and ground-based observations of aerosol optical thickness[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2010,115(D20):898-907. |
[12] | Nguyen H, Cressie N, Braverman A.Spatial statistical data fusion for remote sensing applications[J]. Journal of the American Statistical Association, 2012,107(499):1004-1018. |
[13] | Jinnagara Puttaswamy S, Nguyen H M, Braverman A, et al.Statistical data fusion of multi-sensor AOD over the Continental United States[J]. Geocarto International, 2014,29(1):1-17. |
[14] | Agterberg F P.Autocorrelation functions in geology[A]. In Merriam D F(ed.). Geostatistics[M]. Springer, 1970:113-141. |
[15] | Bretherton F P, Davis R E, Fandry C B.A technique for objective analysis and design of oceanographic experiments applied to MODE-73[J]. Deep Sea Research and Oceanographic Abstracts, 1976,23(7):559-582. |
[16] | Guzzi R, Ballista G, Nicolantonio W D, et al.Aerosol maps from GOME data[J]. Atmospheric environment, 2001,35(30):5079-5091. |
[17] | Bergamasco A, Teatini P, Carbognin L.Confronto critico trakriging e analisi oggettiva[J]. Il Nuovo Cimento C, 1993,16(3):289-302. |
[18] | 林忠辉,莫兴国,李宏轩.中国陆地区域气象要素空间插值[J].地理学报,2002,57(1):47-56. |
[19] | 李军龙,张剑,张丛,等.气象要素空间插值方法的比较分析[J].草业科学,2006,23(8):6-11. |
[20] | Wang J F, Li L F, Christakos G.Sampling and Kriging spatial means: Efficiency and conditions[J]. Sensors, 2009,9(7):5224-5240. |
[21] | Hao W, Chang X.Comparison of Spatial Interpolation Methods for Precipitation in Ningxia, China[J]. International Journal of Science and Research,2013,2(8):181-184. |
[22] | Ge J M, Su J, Fu Q, et al.Dust aerosol forward scattering effects on ground-based aerosol optical depth retrievals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011,112(2):310-319. |
[23] | Xia X A, Chen H B, Wang P C.Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in East Asia[J]. Journal of Environmental Sciences, 2004,16(5):832-837. |
[24] | Dubovik O, Smirnov A, Holben B N, et al.Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2000,105(D8):9791-9806. |
[25] | King M D, Kaufman Y J, Menzel W P, et al.Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992,30(1):2-27. |
[26] | Levelt P F, Hilsenrath E, Leppelmeier G W, et al.Science objectives of the ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(5):1199-1208. |
[27] | Livingston J M, Redemann J, Russell P B, et al.Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B[J]. Atmospheric Chemistry and Physics, 2009,9(18):6743-6765. |
[28] | Eck T F, Holben B N, Reid J S, et al.Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1999,104(D24):31333-31349. |
[29] | Junge C.The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere[J]. Journal of Meteorology, 1955,12(1):13-25. |
[30] | King M D, Byrne D M.A method for inferring total ozone content from the spectral variation of total optical depth obtained with a solar radiometer[J]. Journal of the Atmospheric Sciences, 1976,33(11):2242-2251. |
[31] | Armstrong M.Problems with universal kriging[J]. Mathematical Geology, 1984,16(1):101-108. |
[32] | Christopher S A, Johnson B, Jones T A, et al.Vertical and spatial distribution of dust from aircraft and satellite measurements during the GERBILS field campaign[J]. Geophysical Research Letters, 2009,36(6):150-164. |
[33] | Remer L A, Kaufman Y J, Tanré D, et al.The MODIS aerosol algorithm, products, and validation[J]. Journal of the atmospheric sciences, 2005,62(4):947-973. |
[34] | Remer L A, Kleidman R G, Levy R C, et al.Global aerosol climatology from the MODIS satellite sensors[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2008,113(D14):762-770. |
[1] | 陈文静, 李锐, 董广胜, 李江. 网络地理信息服务中用户空间访问聚集行为研究[J]. 地球信息科学学报, 2021, 23(1): 93-103. |
[2] | 刘俊楠, 刘海砚, 陈晓慧, 郭漩, 郭文月, 朱新铭, 赵清波. 面向多源地理空间数据的知识图谱构建[J]. 地球信息科学学报, 2020, 22(7): 1476-1486. |
[3] | 高旺旺, 冯建中, 白林燕, 杨建华, 郭雷风, 李华林, 崔梦瑞. 海南岛气溶胶时空变化及来源追溯[J]. 地球信息科学学报, 2020, 22(7): 1532-1543. |
[4] | 王峰, 汪小钦, 丁宇. 利用Sentinel-3A OLCI可见光通道反演台湾岛气溶胶光学厚度[J]. 地球信息科学学报, 2020, 22(10): 2038-2050. |
[5] | 周佳, 赵亚鹏, 岳天祥, 卢涛. 结合HASM和GWR方法的省级尺度近地表气温估算[J]. 地球信息科学学报, 2020, 22(10): 2098-2107. |
[6] | 李思宇, 向隆刚, 张彩丽, 龚健雅. 基于低频出租车轨迹的城市路网交叉口提取研究[J]. 地球信息科学学报, 2019, 21(12): 1845-1854. |
[7] | 周岩, 董金玮. 陆表水体遥感监测研究进展[J]. 地球信息科学学报, 2019, 21(11): 1768-1778. |
[8] | 吴吉东, 王旭, 王菜林, 何鑫, 叶梦琪. 社会经济数据空间化现状与发展趋势[J]. 地球信息科学学报, 2018, 20(9): 1252-1262. |
[9] | 罗亮, 闫慧敏, 牛忠恩. 农田生产力监测中3种多源遥感数据融合方法的对比分析[J]. 地球信息科学学报, 2018, 20(2): 268-279. |
[10] | 关舒婧, 韩鹏鹏, 王月如, 韩宇, 易琳, 周廷刚, 陈劲松. 华南地区典型种植园地遥感分类研究[J]. 地球信息科学学报, 2017, 19(11): 1538-1546. |
[11] | 蒲强, 邹滨, 翟亮, 郭宇, 桑会勇, BILAL Muhammad. 集成多源遥感数据的PM2.5浓度空间分布制图[J]. 地球信息科学学报, 2016, 18(12): 1717-1724. |
[12] | 陈韵竹, 施润和, 王超, 陈圆圆, 高炜. 区域优化Peterson模型的气溶胶光学厚度估算分析[J]. 地球信息科学学报, 2013, 15(2): 241-248. |
[13] | 姜莉莉, 齐清文, 邹秀萍. “4D”数据在生态环境监测与评价中的应用[J]. 地球信息科学学报, 2007, 9(3): 123-127,2,135. |
[14] | 胡子付, 曾志远, 张振龙, 王文姬. 小波和IHS变换结合实现ETM图像波段融合[J]. 地球信息科学学报, 2005, 7(4): 29-32. |
[15] | 刘明亮, 唐先明, 庄大方, 刘纪远. 基于融合技术的结构性栅格时空数据平台的构建[J]. 地球信息科学学报, 2003, 5(4): 63-68. |
|