地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (1): 106-116.doi: 10.3724/SP.J.1047.2016.00106

• 遥感科学与应用技术 • 上一篇    下一篇

热红外地表方向性辐射温度与半球辐射温度关系研究

彭硕1,2(), 唐伯惠1,*(), 李召良1, 吴骅1, 唐荣林1   

  1. 1. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
    2. 中国科学院大学,北京 100049
  • 收稿日期:2015-03-09 修回日期:2015-04-21 出版日期:2016-01-10 发布日期:2016-01-10
  • 通讯作者: 唐伯惠 E-mail:pengs.12s@igsnrr.ac.cn;tangbh@igsnrr.ac.cn
  • 作者简介:

    作者简介:彭硕(1989-),女,内蒙古呼和浩特人,硕士生,研究方向为热红外方向性辐射。E-mail: pengs.12s@igsnrr.ac.cn

  • 基金资助:
    国家自然科学基金重点项目(41231170);中国科学院地理科学与资源研究所可桢杰出青年学者计划项目(2012RC101)

Study of the Relationship Between Thermal Infrared Directional and Hemispherical Radiative Temperatures

PENG Shuo1,2(), TANG Bohui1,*(), LI Zhaoliang1, WU Hua1, TANG Ronglin1   

  1. 1. State Key Laboratory of Resources and Environmental information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-03-09 Revised:2015-04-21 Online:2016-01-10 Published:2016-01-10
  • Contact: TANG Bohui E-mail:pengs.12s@igsnrr.ac.cn;tangbh@igsnrr.ac.cn

摘要:

地表温度是陆面过程的一个重要影响因素,利用地表温度的遥感反演算法只能获取卫星传感器观测角度条件下的地表温度(即某个方向上的辐射温度),但地球表面普遍存在非同温像元,反演得到的像元地表辐射温度具有方向性特征。本文利用热红外辐射传输模型4 SAIL(Scattering by Arbitrarily Inclined Leaves),以及方向性热辐射参数化模型,针对非同温均匀冠层,考虑冠层结构、太阳位置和观测角等因素的影响,模拟得到方向性辐射温度数据,与半球辐射温度数据比较,得到估算半球辐射温度的最佳观测角度。此外,开展热红外地面观测试验,对热红外地表辐射温度的角度效应,以及利用模拟数据得到的半球辐射温度最佳观测角度进行了验证。结果表明,当太阳高度角较低时,均匀草地的地表辐射温度,会随着观测天顶角的增大而增加,受观测方位角的影响较小,当观测天顶角为75°时,倾斜观测与垂直观测得到的辐射温度差值达到2.7 K,说明热辐射存在明显的方向性特征。同时,将热红外地表方向性辐射温度与同步观测的半球辐射温度进行对比分析,当叶面积指数小于1.0时,半球辐射温度的最佳替代角度为51°,与模拟结果相符。

关键词: 4 SAIL模型, 方向性热辐射参数化模型, 方向性辐射温度, 多角度观测试验, 半球辐射温度

Abstract:

Land surface temperature (LST) is one of the key parameters in land surface processes, and hemispherical radiative surface temperature is also an important input parameter for land surface models. However, notably the LST derived from satellite scale data is affected by the variation of viewing zenith angles. Therefore, it is necessary to develop methods to estimate the hemispherical radiative temperature from the satellite-derived LST before inputting the hemispherical radiative temperature into land surface models. This paper firstly analyzes the relationship between the directional and hemispherical radiative temperatures simulated by a thermal-infrared radiative transfer model and a parameterized model for flat and homogeneous canopy, considering leaf inclination distribution function (LIDF), leaf area index (LAI), solar zenith angle and viewing azimuth angle. Then, a best directional radiative temperature is proposed to substitute the hemispherical radiative temperature. In addition, this paper also briefly describes the angular effect of the radiative surface temperature via field experimental study. The experiments were conducted over a homogenous and flat grassy lawn using two KT-15.85D infrared radiometers mounted on a multi-angle observation device. The grass radiative surface temperature under different viewing angles was measured by one radiometer through rotating the arm of the multi-angle observation device. The radiative surface temperature at nadir was measured by the other radiometer on a fixed arm. The results reveal that the radiative surface temperature increases with the increase of viewing zenith angle and it depends slightly on the variation of viewing azimuth angle. Comparing the off-nadir radiative temperatures to those measured at nadir, it exhibits a maximum difference of 2.7 K when the viewing zenith angle is at 75°, which implies that the angular effect of infrared radiation does exist. Comparing and analyzing the directional and hemispherical radiative temperatures, we found that the directional radiative temperature measured at a viewing zenith angle of 51° can be the best substitute for the hemispherical radiative temperature when the LAI is below 1.0.

Key words: 4 SAIL model, parameterized model for directional thermal radiation, directional radiative temperature, angular measurement, hemispherical radiative temperature