地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (2): 167-174.doi: 10.3724/SP.J.1047.2016.00167

• • 上一篇    下一篇

网络化地理空间的元胞自动机群体时空格局仿真模型研究

陈建华1(), 涂文洋2   

  1. 1. 成都理工大学地球物理学院,成都 610059
    2. 成都理工大学地球科学学院,成都 610059
  • 收稿日期:2015-03-23 修回日期:2015-05-27 出版日期:2016-02-10 发布日期:2016-02-04
  • 作者简介:

    作者简介:陈建华(1976-),男,河南项城人,博士,副教授,研究方向为空间分析模型与方法。E-mail:chjh3@163.com

  • 基金资助:
    地球探测与信息技术教育部重点实验室开放基金项目(2014DTKF001)

Simulation of Group Spatial-Temporal Patterns Under Networked Geographic Space Based on Cellular Automata

CHEN Jianhua1,*(), TU Wenyang2   

  1. 1. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
    2. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
  • Received:2015-03-23 Revised:2015-05-27 Online:2016-02-10 Published:2016-02-04
  • Contact: CHEN Jianhua E-mail:chjh3@163.com

摘要:

计算机网络的出现,显著地改变了地理空间的相关性。在网络化地理空间中,相关事件、现象、消息的特定网络信息流达到一定程度时,可能引发并塑造群体的特定时空分布格局。因此,针对网络化地理空间特性,基于元胞自动机模型,构建了网络化地理空间元胞自动机仿真模型。仿真实验结果表明:(1) 网络化地理空间中,元胞群体意见存在5种分布;(2) 元胞在空间上呈现出聚集的时空分布格局。研究结果将有助于理解网络化地理空间中针对特定事件、现象、消息的信息流对群体时空分布格局的影响,为网络环境下特定事件、现象的群体时空分布格局分析提供依据。

关键词: 网络化地理空间, 网络信息流, 元胞自动机, 群体时空格局, 仿真

Abstract:

The correlation of geographic space has been significantly changed with the emergence of computer networks. In networked geographic spaces, network traffics that related to specific events, phenomena, or messages may lead to a particular group spatial-temporal distribution pattern when they reach a certain level. Therefore, for specific or targeted audiences, this will give rise to an unexpected result. Due to the characteristics of networked geographic space, by combining computer networks with geography, this paper built a cellular automata simulation model for networked geographic spaces. Simulation results show that: (1) there are five types of distributions for the cellular views in networked geographic spaces; (2) cellular spatial aggregation patterns exist in those spaces. The results can help us better understand the impact of information flow, which is related to specific events, phenomena, or messages, on the group spatial-temporal patterns in networked geographic spaces. They also provide the basis for analyzing the group spatial-temporal distributions of specific events.

Key words: networked geographic space, network traffic, cellular automata, group spatial-temporal pattern, simulation