地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (2): 238-247.doi: 10.3724/SP.J.1047.2016.00238
收稿日期:
2015-07-09
修回日期:
2015-09-29
出版日期:
2016-02-10
发布日期:
2016-02-04
作者简介:
作者简介:孙才志(1970-),男,博士后,教授,博士生导师,主要从事地下水资源评价与管理研究。E-mail:
基金资助:
SUN Caizhi*(), CHEN Xuejiao, CHEN Xiangtao
Received:
2015-07-09
Revised:
2015-09-29
Online:
2016-02-10
Published:
2016-02-04
Contact:
SUN Caizhi
摘要:
以下辽河平原为研究对象,在DRASTIC模型基础上,结合RS技术建立了DRASTICL(DRASTIC land use type)模型。利用ArcGIS的水文分析工具对DEM影像进行子流域划分与数据提取。通过对参数进行不确定性表征,对三角模糊参数设定不同α截集,在此基础上将随机参数和模糊参数进行蒙特卡罗模拟。将不同α截集下模拟结果代入模糊模式识别模型,根据累积分布规律,选取不同百分位,从而得出不同α截集与不同百分位地下水脆弱性取值。结合ArcGIS数据可视化表达,得出不同α截集下下辽河平原浅层地下水脆弱性分布图,以此辨析下辽河平原浅层地下水不确定性与脆弱性程度。最后运用灵敏度分析辨别各参数对模拟结果的实际贡献程度。结果表明:(1)模糊模式识别模型用非线性的形式充分反映参数连续性变化对模拟结果产生的影响。(2)加入土地利用类型参数,结果更能反映人类活动影响下地下水脆弱程度。(3)不同α水平、不同百分位、与不同灵敏度系数3个层次的分析有效处理了参数不确定性问题,为制定相关政策提供更加准确的参考依据,对今后本地区的地下水环境开发利用和保护具有重要意义。
孙才志, 陈雪姣, 陈相涛. 下辽河平原浅层地下水脆弱性评价[J]. 地球信息科学学报, 2016, 18(2): 238-247.DOI:10.3724/SP.J.1047.2016.00238
SUN Caizhi,CHEN Xuejiao,CHEN Xiangtao. The Assessment of Shallow Groundwater Vulnerability in the Lower Reaches of Liaohe River Plain[J]. Journal of Geo-information Science, 2016, 18(2): 238-247.DOI:10.3724/SP.J.1047.2016.00238
表1
地下水位埋深、净补给量、地形坡度、含水层水力传导系数分级与评分
D(地下水位埋深) | R(净补给量) | T(地形坡度) | C(含水层水力传导系数) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
分级 / m | 评分 | 分级 / mm | 评分 | 分级 / (%) | 评分 | 分级 / (m/d) | 评分 | |||
0~1.5 | 10 | 0~51 | 1 | <0.5 | 10 | 0~4.1 | 1 | |||
1.5~4.6 | 9 | 51~102 | 3 | 0.5~1 | 9 | 4.1~12.2 | 2 | |||
4.6~9.1 | 7 | 102~178 | 6 | 1~1.5 | 5 | 12.2~28.5 | 4 | |||
9.1~15.2 | 5 | 178~254 | 8 | 1.5~2 | 3 | 28.5~40.7 | 6 | |||
15.2~22.9 | 3 | >254 | 9 | >2 | 1 | 40.7~81.5 | 8 | |||
22.9~30.5 | 2 | >81.5 | 10 | |||||||
>30.5 | 1 |
表2
含水层介质类型、土壤介质类型、渗流区介质类型、土地利用方式的分级与评分
A(含水层介质类型) | S(土壤介质类型) | I(渗流区介质类型) | L(土地利用方式) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
分类 | 评分 | 分类 | 评分 | 分类 | 评分 | 分类 | 评分 | |||
块状页岩 | 2 | 非胀缩或非凝聚性黏土 | 1 | 承压层 | 1 | 未利用 | 1 | |||
变质岩/火成岩 | 3 | 垃圾 | 2 | 粉砂/粘土 | 3 | 林地 | 3 | |||
风华变质岩/火成岩 | 4 | 粘土质亚黏土 | 3 | 变质岩/火成岩 | 4 | 草地 | 5 | |||
冰碛物 | 5 | 粉砂质亚黏土 | 4 | 灰岩 | 6 | 水域 | 6 | |||
层状砂岩、灰岩及页岩 | 6 | 亚黏土 | 5 | 砂岩 | 6 | 建筑 | 8 | |||
块状砂岩 | 6 | 砂质亚黏土 | 6 | 层状灰岩、页岩、砂岩 | 6 | 旱地 | 9 | |||
块状灰岩 | 6 | 胀缩或凝聚性黏土 | 7 | 含较多粉砂和粘土的砂砾 | 6 | 水田 | 10 | |||
砂砾石 | 8 | 泥炭 | 8 | 砂砾 | 8 | |||||
玄武岩 | 9 | 砂 | 9 | 玄武岩 | 9 | |||||
岩溶灰岩 | 10 | 薄层或裸露土壤、砾 | 10 | 岩溶灰岩 | 10 |
表5
参数的不确定性表征
参数不确定性分布特征值 | ||||||||
---|---|---|---|---|---|---|---|---|
参数 | 不确定类型/分布特征 | 评分值 | 2 | 11 | 19 | 28 | 42 | 61 |
D / m | 随机性/正态分布 | a | 5.625 | 5 | 7.222 | 5.679 | 10.418 | 3 |
s | 2.642 | 1.146 | 5.553 | 3.206 | 6.491 | 0.935 | ||
R / mm | 确定值 | a | 40 | 150 | 355 | 150 | 285 | 200 |
A | 模糊性/ 三角分布 | a1 | 7 | 7 | 6 | 7 | 5 | 5 |
a2 | 8 | 8 | 8 | 8 | 8 | 6 | ||
a3 | 9 | 9 | 9 | 9 | 9 | 7 | ||
S | 模糊性/ 三角分布 | a1 | 3 | 3 | 3 | 3 | 3 | 4 |
a2 | 5 | 5 | 5 | 5 | 5 | 5 | ||
a3 | 10 | 10 | 9 | 10 | 10 | 10 | ||
T / (%) | 随机性/ 均匀分布 | a | 0.381 | 0.532 | 1.417 | 0.626 | 1.670 | 0.358 |
s | 0.215 | 0.396 | 1.573 | 0.561 | 2.820 | 0.197 | ||
I | 模糊性/ 三角分布 | a1 | 1 | 1 | 1 | 1 | 1 | 1 |
a2 | 3 | 1 | 1 | 3 | 1 | 6 | ||
a3 | 10 | 8 | 10 | 10 | 10 | 8 | ||
C / (m/d) | 随机性/对数正态分布 | a | 3.067 | 3.410 | 3.888 | 3.279 | 3.131 | 3.614 |
s | 0.448 | 0.117 | 0.485 | 0.282 | 0.784 | 0.435 | ||
L | 模糊性/ 三角分布 | a1 | 1 | 1 | 1 | 1 | 1 | 3 |
a2 | 9 | 9 | 8 | 9 | 8 | 5 | ||
a3 | 10 | 10 | 10 | 10 | 10 | 10 |
表6
所选分区不同可能性水平、不同百分位下地下水脆弱性指数
可信度水平α | 百分位/ (%) | 2 | 11 | 19 | 28 | 42 | 61 |
---|---|---|---|---|---|---|---|
0.5 | 50 | 0.540 | 0.566 | 0.618 | 0.652 | 0.571 | 0.771 |
75 | 0.590 | 0.615 | 0.679 | 0.731 | 0.634 | 0.811 | |
95 | 0.660 | 0.681 | 0.782 | 0.792 | 0.738 | 0.860 | |
0.7 | 50 | 0.514 | 0.543 | 0.611 | 0.625 | 0.539 | 0.768 |
75 | 0.554 | 0.571 | 0.649 | 0.666 | 0.594 | 0.794 | |
95 | 0.608 | 0.614 | 0.717 | 0.752 | 0.678 | 0.830 | |
0.9 | 50 | 0.502 | 0.528 | 0.589 | 0.608 | 0.523 | 0.763 |
75 | 0.530 | 0.541 | 0.628 | 0.637 | 0.576 | 0.779 | |
95 | 0.570 | 0.560 | 0.664 | 0.675 | 0.626 | 0.799 | |
1 | 50 | 0.515 | 0.524 | 0.582 | 0.620 | 0.517 | 0.779 |
75 | 0.538 | 0.534 | 0.615 | 0.649 | 0.561 | 0.788 | |
95 | 0.565 | 0.544 | 0.649 | 0.672 | 0.610 | 0.800 |
[1] |
王琼,谭秀益,陈峻峰,等.中国地下水污染现状分析及研究进展[J].环境科学与管理,2012,37(z1):52-56.
doi: 10.3969/j.issn.1673-1212.2012.z1.018 |
[ Wang Q, Tan X Y, Chen J F, et al.Current situation and research progress of groundwater pollution in China[J]. Environmental Science and Management, 2012,37(z1):52-56. ]
doi: 10.3969/j.issn.1673-1212.2012.z1.018 |
|
[2] |
孙才志,潘俊.地下水脆弱性的概念、评价方法与研究前景[J].水科学进展,1999(4):444-449.
doi: 10.3321/j.issn:1001-6791.1999.04.016 |
[ Sun C Z, Pan J.Concept and assessment of groundwater vulnerability and its future prospect[J]. Advances in Water Science, 1999,4:444-449. ]
doi: 10.3321/j.issn:1001-6791.1999.04.016 |
|
[3] |
张昕,蒋晓东,张龙.地下水脆弱性评价方法与研究进展[J].地质与资源,2010(3):253-258.
doi: 10.3969/j.issn.1671-1947.2010.03.012 |
[ Zhang X, Jiang X D, Zhang L.Methods and research progress of groundwater vulnerability assessment[J]. Geology and Resources, 2010,3:253-258. ]
doi: 10.3969/j.issn.1671-1947.2010.03.012 |
|
[4] | Aller L, Bennet T, Lehr J H, et al.DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeological settings[M]. Oklahoma: U. S. Environmental Protection Agency, 1987. |
[5] |
Insaf S B, Mohamed M A, Hiyama T, et al.A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan[J]. Science of the Total Environment, 2005,345:127-140.
doi: 10.1016/j.scitotenv.2004.11.005 pmid: 15919534 |
[6] | Hamza M H, Added A, Rodrlguez R, et al.A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semiarid region[J]. Journal of Environmental Management, 2007,84:2-19. |
[7] | Lynch S D, Reynder S G, Schulze R E.A DRASTIC approach to groundwater vulnerability in South Africa[J]. South Africa Journal of Science, 1997,93(2):59-65. |
[8] |
鄂建,孙爱荣,钟新永,等.DRASTIC模型的缺陷与改进方法探讨[J].水文地质工程地质,2010,37(1):102-107.
doi: 10.3969/j.issn.1000-3665.2010.01.021 |
[ E J, Sun A R, Zhong X Y. Inadequacies of DRASTIC model and discussion of improvement[J]. Hydrogeology and Engineering Geology, 2010,37(1):102-107. ]
doi: 10.3969/j.issn.1000-3665.2010.01.021 |
|
[9] | Thirumalaivasan D, Karmegam M, Venugopal K.AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS[J]. Environmental Modelling & Software, 2003,18:645-656. |
[10] |
Afshar A, Marino M A, Ebtehaj M, et al.Rule-based fuzzy system for assessing groundwater vulnerability[J]. Journal of Environmental Engineering ASCE, 2007,133(5):532-540.
doi: 10.1061/(ASCE)0733-9372(2007)133:5(532) |
[11] |
Pathak D R, Hiratsuka A.An integrated GIS based fuzzy pattern recognition model to compute groundwater vulnerability index for decision making[J]. Journal of Hydro-environment Research, 2010,51:63-77.
doi: 10.1016/j.jher.2009.10.015 |
[12] |
Al-Adamat R A N, Foster I D L, Baban S M J. Groundwater vulnerability and risk mapping for the basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC[J]. Applied Geography, 2003,23:303-324.
doi: 10.1016/j.apgeog.2003.08.007 |
[13] |
杨庆,栾茂田,崇金著,等.DRASTIC指标体系法在大连市地下水易污性评价中的应用[J].大连理工大学学报,1999(5):684-688.
doi: 10.1088/0256-307X/15/12/025 |
[ Yang Q, Luan M T, Chong J Z, et al.Study of application of DRASTIC index to assessment of groundwater vulnerability to pollution of Dalian city[J]. Journal of Dalian University of Technology, 1999,5:684-688. ]
doi: 10.1088/0256-307X/15/12/025 |
|
[14] |
张泰丽,冯小铭,刘红樱,等.DRASTIC评价模型在台州市浅层地下水脆弱性评价中的应用[J].资源调查与环境,2007(2):138-144.
doi: 10.3969/j.issn.1671-4814.2007.02.008 |
[ Zhang T L, Feng X M, Liu H Y, et al.Application of DRASTIC model to groundwater vulnerability assessment in Taizhou plain area[J]. Resources Survey and Environment, 2007,2:138-144. ]
doi: 10.3969/j.issn.1671-4814.2007.02.008 |
|
[15] |
李辉,何江涛,陈鸿汉.应用DRASTIC模型评价湛江市浅层地下水脆弱性[J].广东水利水电,2007(1):48-52.
doi: 10.3969/j.issn.1008-0112.2007.01.015 |
[ Li H, He J T, Chen H G.Assessment of shallow groundwater vulnerability in Zhanjiang city by using DRASTIC Model[J]. Guangdong Water Resources and Hydropower, 2007,1:48-52. ]
doi: 10.3969/j.issn.1008-0112.2007.01.015 |
|
[16] |
王国利,周惠成,杨庆.基于DRASTIC的地下水易污染性多目标模糊模式识别模型[J].水科学进展,2000(2):173-179.
doi: 10.3321/j.issn:1001-6791.2000.02.011 |
[ Wang G L, Zhou H C, Yang Q.A multi-objective fuzzy pattern recognition model for assessing groundwater vulnerability based on the DRASTIC system[J]. Advances in Water Science, 2000,2:173-179. ]
doi: 10.3321/j.issn:1001-6791.2000.02.011 |
|
[17] | 陈守煜,伏广涛,周惠成,等.含水层脆弱性模糊分析评价模型与方法[J].水利学报,2002(7):23-30. |
[ Chen S Y, Fu G T, Zhou H C, et al.Fuzzy analysis model and methodology for aquifer vulnerability evaluation[J]. Journal of Hydraulic Engineering, 2002,7:23-30. ] | |
[18] |
孟宪萌,束龙仓,卢耀如.基于熵权的改进DRASTIC模型在地下水脆弱性评价中的应用[J].水利学报,2007,38(1):94-99.
doi: 10.3321/j.issn:0559-9350.2007.01.014 |
[ Meng X M, Shu L C, Lu Y R.Modified DRASTIC model for groundwater vulnerability assessment based on entropy weight[J]. Journal of Hydraulic Engineering, 2007,38(1):94-99. ]
doi: 10.3321/j.issn:0559-9350.2007.01.014 |
|
[19] | 孙才志,奚旭.不确定条件下的下辽河平原地下水本质脆弱性评价[J].水利水电科技进展,2014(5):1-7. |
[ Sun C Z, Xi X.Assessment of groundwater intrinsic vulnerability in the lower reaches of Liaohe River Plain under uncertain conditions[J]. Advances in Science and Technology of Water Resources, 2014,5:1-7. ] | |
[20] |
雷静,张思聪.唐山市平原区地下水脆弱性评价研究[J].环境科学学报,2003,23(1):94-99.
doi: 10.3321/j.issn:0253-2468.2003.01.019 |
[ Lei J, Zhang S C.Study on the groundwater vulnerability assessment in Tangshan plain area[J]. Acta Scientiae Circumstantiae, 2003,23(1):94-99. ]
doi: 10.3321/j.issn:0253-2468.2003.01.019 |
|
[21] |
马金珠,高前兆.干旱区地下水脆弱性特征及评价方法探讨[J].干旱区地理,2003,26(1):44-49.
doi: 10.3321/j.issn:1000-6060.2003.01.008 |
[ Ma J Z, Gao Q Z.Groundwater vulnerability and its assessing method in the arid land of NW China[J]. Arid Land Geography, 2003,26(1):44-49. ]
doi: 10.3321/j.issn:1000-6060.2003.01.008 |
|
[22] | 孙才志,左海军,栾天新,等.下辽河平原地下水脆弱性研究[J].吉林大学学报(地球科学版), 2007,37(5):943-948. |
[ Sun C Z, Zuo H J, Luan T X, et al. Research on groundwater vulnerability assessment of the lower Liaohe River Plain[J]. Journal of Jilin University: Earth Science Edition, 2007,37(5):943-948. ] | |
[23] |
束龙仓,朱元生.地下水资源评价中的不确定性因素分析[J].水文地质工程地质,2000,27(6):6-8.
doi: 10.3969/j.issn.1000-3665.2000.06.002 |
[ Shu L C, Zhu Y S.The analysis of uncertainty in the evaluation of groundwater resources[J]. Hydrogeology and Engineering Geology, 2000,27(6):6-8. ]
doi: 10.3969/j.issn.1000-3665.2000.06.002 |
|
[24] |
Ronald E G, Robert E Y.A parametric representation of fuzzy numbers and their arithmetic operators[J]. Fuzzy Sets and Systems, 1997,91(2):185-202.
doi: 10.1016/S0165-0114(97)00140-1 |
[25] |
金菊良,魏一鸣,丁晶,等.基于改进层次分析法的模糊综合评价模型[J].水利学报,2004(3):65-70.
doi: 10.3321/j.issn:0559-9350.2004.03.011 |
[ Jin J L, Wei Y M, Ding J, et al.Fuzzy comprehensive evaluation model based on improved analytic hierarchy process[J]. Journal of Hydraulic Engineering, 2004,3:65-70. ]
doi: 10.3321/j.issn:0559-9350.2004.03.011 |
|
[26] | 李绍飞,王勇,毛慧慧,等.一种改进的DRASTIC模型及其在地下水脆弱性评价中的应用[J].数学的实践与认识,2010,40(9):68-75. |
[ Li S F, Wang Y, Mao H H, et al.A modified DRASTIC model and its application on assessment of groundwater vulnerability[J]. Mathematics in Practice and Theory, 2010,40(9):68-75. ] | |
[27] |
邹志红,孙靖南,任广平,等.模糊评价因子的熵权法赋权及其在水质评价中的应用[J].环境科学学报,2005,25(4):552-556.
doi: 10.3321/j.issn:0253-2468.2005.04.022 |
[ Zou Z H, Sun J N, Ren G P, et al.Study and application on the entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Acta Scientiae Circumstantiae, 2005,25(4):552-556. ]
doi: 10.3321/j.issn:0253-2468.2005.04.022 |
|
[28] |
罗军刚,解建仓,阮本清,等.基于熵权的水资源短缺风险模糊综合评价模型及应用[J].水利学报,2008,39(9):1092-1097.
doi: 10.3321/j.issn:0559-9350.2008.09.010 |
[ Luo J G, Xie J C, Ruan B Q, et al.Fuzzy comprehensive assessment model for water shortage risk based on entropy weight[J]. Journal of Hydraulic Engineering, 2008,39(9):1092-1097. ]
doi: 10.3321/j.issn:0559-9350.2008.09.010 |
|
[29] | 王文圣,张翔,金菊良,等.水文学不确定性分析方法[M].北京:科学出版社,2011. |
[ Wang W S, Zhang X, Jin J L, et al.Uncertainty analysis method of hydrology[M]. Beijing: Science Publishing, 2011. ] | |
[30] | 黄振平. 水文统计学[M].南京:河海大学出版社,2003. |
[ Huang Z P. Hydrology statistics[M]. Hohai University Publishing, 2003. ] | |
[31] |
陈彦,吴吉春.含水层渗透系数空间变异性对地下水数值模拟的影响[J].水科学进展,2005,16(4):482-487.
doi: 10.3321/j.issn:1001-6791.2005.04.002 |
[ Chen Y, Wu J C.Effect of the spatial variability of hydraulic conductivity in aquifer on the numerical simulation of groundwater[J]. Advances in Water Science, 2005,16(4):482-487. ]
doi: 10.3321/j.issn:1001-6791.2005.04.002 |
|
[32] |
束龙仓,朱元生,孙庆义,等.地下水允许开采量确定的风险分析[J].水利学报,2000(3):77-80.
doi: 10.3321/j.issn:0559-9350.2000.03.014 |
[ Shu L C, Zhu Y S, Sun Q Y, et al.Risk analysis of groundwater allowable withdrawal evaluation[J]. Journal of Hydraulic Engineering, 2000,3:77-80. ]
doi: 10.3321/j.issn:0559-9350.2000.03.014 |
|
[33] | 束龙仓,王茂枚,刘瑞国,等.地下水数值模拟中的参数灵敏度分析[J].河海大学学报(自然科学版),2007,35(5):491-495. |
[ Shu L C, Wang M M, Liu R G, et al.Sensitivity analysis of parameters in numerical simulation of groundwater[J]. Journal of Hohai University (Natural Sciences), 2007,35(5):491-495. ] |
[1] | 段艳慧, 赵学胜, 彭舒. 基于信息熵的GlobeLand 30和WorldCover耕地破碎区一致性分析[J]. 地球信息科学学报, 2023, 25(5): 1027-1036. |
[2] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[3] | 郭逸飞, 吴田军, 骆剑承, 石含宁, 郜丽静. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7): 1406-1419. |
[4] | 肖中圣, 许奇, 毛保华, 魏润斌, 冯佳. 不同测算方法下行程时间不确定性对可达性的影响分析[J]. 地球信息科学学报, 2022, 24(11): 2102-2114. |
[5] | 李思进, 代文, 熊礼阳, 汤国安. DEM分辨率对黄土侵蚀沟形态特征表达的不确定性分析[J]. 地球信息科学学报, 2020, 22(3): 338-350. |
[6] | 吴瑞娟, 何秀凤, 王静. 结合像元级与对象级的滨海湿地变化检测方法[J]. 地球信息科学学报, 2020, 22(10): 2078-2087. |
[7] | 陈鲁皖, 韩玲, 王文娟, 秦小宝. 地表组合粗糙度不确定性引起的SAR反演土壤水分的不确定性分析[J]. 地球信息科学学报, 2018, 20(1): 108-118. |
[8] | 阎福礼, 吴亮, 王世新, 周艺, 徐晨娜, 王利双. 水体表面温度反演研究综述[J]. 地球信息科学学报, 2015, 17(8): 969-978. |
[9] | 张小虎, 钟耳顺, 王少华, 张珣, 张济. 多边形统计数据空间分析的不确定性研究——以北京市海淀区人口普查数据为例[J]. 地球信息科学学报, 2013, 15(3): 369-379. |
[10] | 张毅, 邬阳, 高勇, 刘瑜. 基于空间陈述的定位及不确定性研究[J]. 地球信息科学学报, 2013, 15(1): 38-45. |
[11] | 孙朝阳, 邵全琴, 刘纪远. 近40年来中国大陆地表气温变化估算[J]. 地球信息科学学报, 2012, 14(1): 14-21. |
[12] | 赵明伟, 汤国安, 田剑. AMMI模型的DEM内插方法不确定性研究[J]. 地球信息科学学报, 2012, 14(1): 62-66. |
[13] | 张善明, 吕新彪, 唐小春, 邓国祥. 矿产预测中的不确定性评估方法与应用——以广西大瑶山矿区为例[J]. 地球信息科学学报, 2010, 12(3): 342-347. |
[14] | 薛存金, 苏奋振. 不确定性对象表达及其时空拓扑研究[J]. 地球信息科学学报, 2009, 11(4): 475-481. |
[15] | 杜国明, 于凤荣, 张树文. 人口数据在地学应用中的若干问题[J]. 地球信息科学学报, 2008, 10(6): 703-709. |
|