地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (5): 590-598.doi: 10.3724/SP.J.1047.2016.00590

所属专题: 地理大数据

• 遥感大数据协同计算理论 • 上一篇    下一篇

地理时空大数据协同计算技术

骆剑承1(), 胡晓东1, 吴炜2, 王博3   

  1. 1. 中国科学院遥感与数字地球研究所 遥感科学国家重点实验室,北京 100101
    2. 浙江工业大学计算机学院,杭州 310023
    3. 南京航空航天大学航天学院,南京 211106
  • 收稿日期:2016-01-04 修回日期:2016-03-13 出版日期:2016-05-10 发布日期:2016-05-10
  • 作者简介:

    作者简介:骆剑承(1970-),男,浙江临安人,博士,研究员,研究方向为遥感大数据协同计算。E-mail:luojc@radi.ac.cn

  • 基金资助:
    国家自然科学基金项目(41301438、41301473);国家高技术研究发展计划项目(2015AA123901);中国科学院重点部署项目(KZZD-EW-07-02)

Collaborative Computing Technology of Geographical Big Data

LUO Jiancheng1,*(), HU Xiaodong1, WU Wei2, WANG Bo3   

  1. 1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
    2. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
    3. College of Aerospace Engineering Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2016-01-04 Revised:2016-03-13 Online:2016-05-10 Published:2016-05-10
  • Contact: LUO Jiancheng E-mail:luojc@radi.ac.cn

摘要:

大数据时代,地理时空数据的迅猛增长给应用理念、技术框架和服务形式带来挑战。本文在阐述地理时空大数据概念的基础上,首先分析了地理时空大数据计算面临的挑战,从数据协同、技术协同、服务协同和生产协同4个层次阐述了地理时空大数据协同计算方法;然后,根据平台化服务的需求设计了地理时空大数据协同计算框架,从遥感数据综合预处理、地理时空数据的组织与管理、地理时空大数据高效计算、地理时空大数据可视化4个方面论述了地理时空大数据协同计算实现的关键技术;最后,以遥感大数据综合处理系统作为案例说明了地理时空大数据协同计算与服务的实现方法,并对地理时空大数据的应用模式进行了展望。

关键词: 地理时空大数据, 协同计算, 影像处理机, 遥感服务

Abstract:

In the era of big data, the rapid growth of geographic spatial temporal data has challenged the conventional application concepts, technical framework and service modes. In this paper, the concept and features of geographic spatial temporal big data is elaborated firstly. Then, the characteristics and challenges of the geographic spatial temporal big data computation are analyzed. Particularly, the theory of collaborative computing and service for the geographic spatial temporal big data is developed, which includes four levels of collaboration: data collaboration, technology collaboration, service collaboration and producing collaboration. According to the demand of the market-oriented operation and platform-based service, the technical frameworks of the geographic spatial temporal big data collaborative computing are designed. Furthermore, four common key technologies are discussed, including the remote sensing data preprocessing, the geographic spatial temporal data storage and management, the high performance computing and the visualization of geographic spatial temporal big data. Next, the remote sensing data processing system is developed, and is taken as a case to illustrate the implementation of collaborative computing and service of geographic spatial temporal big data. At last, this paper forecasts the future application mode of geographic spatial temporal big data.

Key words: geographical big data, collaborative computing, image processing machine, remote sensing service