地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (5): 632-638.doi: 10.3724/SP.J.1047.2016.00632
收稿日期:
2016-02-15
修回日期:
2016-04-18
出版日期:
2016-05-10
发布日期:
2016-05-10
作者简介:
作者简介:杨海平(1987-),女,博士,研究方向为高分辨率遥感影像信息提取。E-mail:
基金资助:
YANG Haiping1,2,*(), MING Dongping3
Received:
2016-02-15
Revised:
2016-04-18
Online:
2016-05-10
Published:
2016-05-10
Contact:
YANG Haiping
摘要:
采用面向对象方法处理高空间分辨率遥感影像时,影像分割质量对后续影像的信息提取结果影响很大。本文主要针对高分辨率影像分割中地物多尺度的问题,提出了一种基于多层优选尺度的高分辨率影像分割算法。该算法首先采用一系列规律变化的尺度对高分辨率影像进行多尺度分割,然后通过单分割层全局标准差的变化与尺度的关系确定一组最优分割尺度。在此基础上,通过各优选分割层之间的包含关系,局部建立多层次对象树,从整体上形成影像森林;通过局部同质性异质性综合评价指数的比较及父层光谱特征的限制来选取多层次对象树中的优势对象,从而获得最终的高分辨率影像分割结果。最后,本文分别采用了Geoeye和ZY3多光谱影像进行了2组分割实验,结果表明本文算法能有效地提高正常分割影像对象的比例。
杨海平, 明冬萍. 综合多层优选尺度的高分辨率影像分割[J]. 地球信息科学学报, 2016, 18(5): 632-638.DOI:10.3724/SP.J.1047.2016.00632
YANG Haiping,MING Dongping. Optimal Scales Based Segmentation of High Spatial Resolution Remote Sensing Data[J]. Journal of Geo-information Science, 2016, 18(5): 632-638.DOI:10.3724/SP.J.1047.2016.00632
[1] | Li X, Shao G.Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern USA[J]. Remote Sensing, 2014,6(11):11372-11390. |
[2] |
Myint S W, Gober P, Brazel A, et al.Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery[J]. Remote Sensing of Environment, 2011,115(5):1145-1161.
doi: 10.1016/j.rse.2010.12.017 |
[3] |
Chen Y, Su W, Li J, et al.Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas[J]. Advances in Space Research, 2009,43(7):1101-1110.
doi: 10.1016/j.asr.2008.11.008 |
[4] | Cleve C, Kelly M, Kearns F R, et al.Classification of the wildland-urban interface: a comparison of pixel-and object-based classifications using high-resolution aerial photography[J]. Computers, Environment and Urban Systems, 2008,32(4):317-326. |
[5] |
Michel J, Youssefi D, Grizonnet M.Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(2):952-964.
doi: 10.1109/TGRS.2014.2330857 |
[6] |
Wang M, Li R X.Segmentation of high spatial resolution remote sensing imagery based on hard-boundary constraint and two-stage merging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(9):5712-5725.
doi: 10.1109/TGRS.2013.2292053 |
[7] |
Sziranyi T, Shadaydeh M.Segmentation of remote sensing images using similarity-measure-based fusion-MRF model[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(9):1544-1548.
doi: 10.1109/LGRS.2014.2300873 |
[8] | Sammouda R, Touir A, Reyad Y A, et al.Adapting artificial hopfield neural network for agriculture satellite image segmentation[C]. Proceedings of the International Conference on Computer Applications Technology, 2013. |
[9] |
邓富亮,唐娉,刘源,等.引入松弛因子的高分辨率遥感影像自动多层次分割[J].遥感学报,2013,17(6):1492-1507.
doi: 10.11834/jrs.20133031 |
[ Deng F L, Tang P, Liu Y, et al.Automated hierarchical segmentation of high-resolution remote sensing imagery with introduced relaxation factors[J]. Journal of Remote Sensing, 2013,17(6):1492-1507. ]
doi: 10.11834/jrs.20133031 |
|
[10] | 沈占锋,骆剑承,胡晓东,等.高分辨率遥感影像多尺度均值漂移分割算法研究[J].武汉大学学报·信息科学版,2010,35(3):313-317. |
[ Shen Z F, Luo J C, Hu X D, et al.A mean shift multi-scale segmentation for high-resolution remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2010,35(3):313-317. ] | |
[11] |
Liu J, Li P, Wang X.A new segmentation method for very high resolution imagery using spectral and morphological information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,101:145-162.
doi: 10.1016/j.isprsjprs.2014.11.009 |
[12] |
Wang C, Shi A Y, Wang X, et al.A novel multi-scale segmentation algorithm for high resolution remote sensing images based on wavelet transform and improved JSEG algorithm[J]. Optik-International Journal for Light and Electron Optics, 2014,125(19):5588-5595.
doi: 10.1016/j.ijleo.2014.07.002 |
[13] |
Zhang X, Xiao P, Feng X, et al.Hybrid region merging method for segmentation of high-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,98:19-28.
doi: 10.1016/j.isprsjprs.2014.09.011 |
[14] |
邓富亮,杨崇俊,曹春香,等.高分辨率影像分割的分形网络演化改进方法[J].地球信息科学学报,2014,16(1):95-101.
doi: 10.3724/SP.J.1047.2013.00095 |
[ Deng F L, Yang C J, Cao C X, et al.An improved method of FNEA for high resolution remote sensing image segmentation[J]. Journal of Geo-Information Science, 2014,16(1):95-101. ]
doi: 10.3724/SP.J.1047.2013.00095 |
|
[15] | eCognition Developer. eCognition developer 8.7: reference book[M]. Munich, Germany: Trimble Germany GmbH, 2011. |
[16] | 何敏,张文君,王卫红.面向对象的最优分割尺度计算模型[J].大地测量与地球动力学,2009,29(1):106-109. |
[ He M, Zhang W J, Wang W H.Optimal segmentation scale model based on object-oriented analysis method[J]. Journal of Geodesy and Geodynamics, 2009,29(1):106-109. ] | |
[17] |
Witharana C, Civco D L.Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ed2)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,87:108-121.
doi: 10.1016/j.isprsjprs.2013.11.006 |
[18] | 刘大伟,黄磊,李斌兵.一种基于对象相似性的遥感影像最优分割尺度评价方法[J].大地测量与地球动力学,2013,33(6):137-140. |
[ Liu D W, Huang L, Li B B.An assessment method for optimal segmentation scale of remote sensing image based on similarity between objects[J]. Journal of Geodesy and Geodynamics, 2013,33(6):137-140. ] | |
[19] | 陈春雷,武刚.面向对象的遥感影像最优分割尺度评价[J].遥感技术与应用,2011,26(1):96-102. |
[ Chen C L, Wu G.Evaluation of optimal segmentation scale with object-oriented method in remote sensing[J]. Remote Sensing Technology and Application, 2011,26(1):96-102. ] | |
[20] |
李秦,高锡章,张涛,等. 最优分割尺度下的多层次遥感地物分类实验分析[J].地球信息科学学报,2011,13(3):410-417.
doi: 10.3724/SP.J.1047.2011.00409 |
[ Li Q, Gao X Z, Zhang T, et al.Optimal segmentation scale selection and evaluation for multi-layer image recognition and classification[J]. Journal of Geo-Information Science, 2011,13(3):410-417. ]
doi: 10.3724/SP.J.1047.2011.00409 |
|
[21] |
Drǎguţ L, Tiede D, Levick S R.ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010,24(6):859-871.
doi: 10.1080/13658810903174803 |
[1] | 冯耀伟, 屈永华. 结合光照信息的多尺度K-均值植被几何光学四分量提取算法[J]. 地球信息科学学报, 2023, 25(5): 1037-1049. |
[2] | 李心雨, 闫浩文, 王卓, 王炳瑄. 街景图像与机器学习相结合的道路环境安全感知评价与影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 852-865. |
[3] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[4] | 吴子豪, 刘耀林, 冯向阳, 陈奕云, 闫庆武. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573-587. |
[5] | 高建文, 管海燕, 彭代锋, 许正森, 康健, 季雅婷, 翟若雪. 基于局部-全局语义特征增强的遥感影像变化检测网络模型[J]. 地球信息科学学报, 2023, 25(3): 625-637. |
[6] | 高鹏飞, 曹雪峰, 李科, 游雄. 融合多元稀疏特征与阶层深度特征的遥感影像目标检测[J]. 地球信息科学学报, 2023, 25(3): 638-653. |
[7] | 饶子昱, 卢俊, 郭海涛, 余东行, 侯青峰. 利用视角转换的跨视角影像匹配方法[J]. 地球信息科学学报, 2023, 25(2): 368-379. |
[8] | 刘洋, 康健, 管海燕, 汪汉云. 基于双注意力残差网络的高分遥感影像道路提取模型[J]. 地球信息科学学报, 2023, 25(2): 396-408. |
[9] | 张歆越, 高晓路, 柴琪, 宋敦江. 中国地级城市建成区蓝绿空间时空格局及其气候影响因素分析[J]. 地球信息科学学报, 2023, 25(1): 190-207. |
[10] | 张旭, 柳林, 周翰林, 岳瀚, 孙秋远. 基于贝叶斯逻辑回归模型研究百度街景图像微观建成环境因素对街面犯罪的影响[J]. 地球信息科学学报, 2022, 24(8): 1488-1501. |
[11] | 闵杰, 张永生, 于英, 吕可枫, 王自全, 张磊. 增强型遥感影像SRGAN算法及其在三维重建精度提升中的应用[J]. 地球信息科学学报, 2022, 24(8): 1631-1644. |
[12] | 张娜, 王磊, 殷楠. 结合质心Voronoi图优化的三维Douglas-Peucker地形简化算法[J]. 地球信息科学学报, 2022, 24(7): 1245-1253. |
[13] | 郭玮, 谷宇航, 江南. 面向多粒度时空对象数据模型的网络电子地图生成方法[J]. 地球信息科学学报, 2022, 24(7): 1264-1274. |
[14] | 刘佳, 伍宇明, 高星, 司文涛. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7): 1275-1285. |
[15] | 彭瑞, 赵文智, 张立强, 陈学泓. 基于多尺度对比学习的弱监督遥感场景分类[J]. 地球信息科学学报, 2022, 24(7): 1375-1390. |
|