地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (5): 655-663.doi: 10.3724/SP.J.1047.2016.00655

• 遥感大数据协同计算方法 • 上一篇    下一篇

历史解译知识引导下组合遥感图谱特征的变化检测方法

吴田军1,2(), 马江洪1   

  1. 1. 长安大学理学院数学与信息科学系,西安 710064
    2. 浙江省海洋大数据挖掘与应用重点实验室,舟山 316022
  • 收稿日期:2015-12-15 修回日期:2016-03-11 出版日期:2016-05-10 发布日期:2016-05-10
  • 作者简介:

    作者简介:吴田军(1986-),男,博士,讲师,研究方向为遥感信息计算。E-mail:wutianjun1986@163.com

  • 基金资助:
    浙江省海洋大数据挖掘与应用重点实验室开放课题(OBDMA201508);国家高分辨率对地观测系统重大专项(03-Y30B06-9001-13/15-01);中国科学院重点部署项目(KZZD-EW-07-01);长安大学中央高校基本科研业务费专项资金基础研究项目(310812161010);国家自然科学基金项目(11261044)

A Remote Sensing Change Detection Method Combining with Spatial-Spectral Features under the Guidance of Historical Interpretation Knowledge

WU Tianjun1,2,*(), MA Jianghong1   

  1. 1. Department of Mathematics and Information Science, College of Science, Chang'an University, Xi'an 710064
    2. Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, Zhoushan 316022, China
  • Received:2015-12-15 Revised:2016-03-11 Online:2016-05-10 Published:2016-05-10
  • Contact: WU Tianjun E-mail:wutianjun1986@163.com

摘要:

高空间分辨率遥感影像为地表变化监测提供了大量细节信息,这使得基于高分辨率影像的变化检测技术成为当前遥感领域的研究热点之一。本文提出了一种历史解译知识引导下组合遥感图谱特征的变化检测方法。首先,通过分割前后时相的组合影像构建空间位置一致的对象,并在提取对象光谱和纹理特征后,引入前期土地覆盖专题图指导2类图谱特征相似度的DS证据融合;然后,利用其历史存档图斑所属区域的优势地类标签指示不同特征相似度的证据差异融合;最后,基于GMM(Gaussian Mixture Mode)模型的二值化方法提取最终的变化区域。实验结果表明,该方法能充分利用历史解译知识指导不同时相高分辨率影像对象特征相似度组合,一定程度上提高了变化检测正确率。

关键词: 高空间分辨率遥感, 面向对象变化检测, 图谱特征组合, DS证据理论, 高斯混合模型

Abstract:

Remote sensing images with high-spatial-resolution can provide a great amount of detailed information for land resource monitoring, which makes the change detection using the high-spatial-resolution remote sensing images become the focus of current remote sensing research. This article proposes a remote sensing change detection method through combining with the spatial-spectral features under the guidance of historical interpretation knowledge. Firstly, the objects of consistent spatial position are constructed by segmenting the combined image from different phases. After that, the objects’ spectral and texture features are extracted. Then, we introduce the previous land cover maps to guide the DS evidence fusion for the similarities of two different types of features. The archived class-type label in each polygon from the land cover maps is used to direct the similarity fusion with different evidence confidences. Finally, a binarization method based on the Gaussian Mixture Model is adopted to extract the change regions. Experimental results show that this method can take advantage of the historical interpretation knowledge to guide the fusion of different object-feature-similarities; moreover, to a certain extent, to effectively improve the accuracy of change detection.

Key words: high-spatial-resolution remote sensing, object-based change detection, spatial-spectral features combination, DS Evidence Theory, Gaussian Mixture Model