地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (7): 941-950.doi: 10.3724/SP.J.1047.2016.00941
唐志光1(), 李弘毅2, 王建2, 梁继1, 李朝奎1, 车涛2, 王欣1
收稿日期:
2015-06-29
修回日期:
2015-10-28
出版日期:
2016-07-15
发布日期:
2016-07-15
作者简介:
作者简介:唐志光(1985-),男,湖南邵阳人,博士,讲师,主要从事冰冻圈遥感研究。E-mail:
基金资助:
TANG Zhiguang1,*(), LI Hongyi2, WANG Jian2, LIANG Ji1, LI Chaokui1, CHE Tao2, WANG Xin1
Received:
2015-06-29
Revised:
2015-10-28
Online:
2016-07-15
Published:
2016-07-15
Contact:
TANG Zhiguang
摘要:
青藏高原地形复杂,积雪时空分布异质性较强且大部分地区积雪较薄,而被动微波遥感因其空间分辨率低以及雪深反演中的不确定性,极大地限制了其反演青藏高原雪深的精度。本文尝试将多源遥感数据以及与积雪模型(SnowModel)相结合,来重建更高质量的青藏高原雪深数据。首先,利用MODIS积雪面积比例产品,根据构建的积雪衰减曲线以及经验的融合规则对低分辨率被动微波雪深进行了降尺度;然后,结合MODIS/被动微波融合雪深数据和SnowModel对研究区进行雪深数据同化实验;最后,利用地面站实测雪深数据对MODIS/被动微波融合雪深以及同化输出雪深的精度进行了分析和对比。结果表明,基于数据同化方法得到的雪深数据更接近地面观测雪深值,通过均方根误差以及相关系数的对比,同化雪深结果优于MODIS/被动微波融合雪深结果。
唐志光, 李弘毅, 王建, 梁继, 李朝奎, 车涛, 王欣. 基于多源数据的青藏高原雪深重建[J]. 地球信息科学学报, 2016, 18(7): 941-950.DOI:10.3724/SP.J.1047.2016.00941
TANG Zhiguang,LI Hongyi,WANG Jian,LIANG Ji,LI Chaokui,CHE Tao,WANG Xin. Reconstruction of Snow Depth over the Tibetan Plateau Based on Muti-source Data[J]. Journal of Geo-information Science, 2016, 18(7): 941-950.DOI:10.3724/SP.J.1047.2016.00941
[24] | De Lannoy G ., Reichle R ., Arsenault K ., et al. Multiscale assimilation of advanced microwave scanning radiometer-EOS snow water equivalent and moderate resolution imaging spectroradiometer snow cover fraction observations in northern Colorado[J]. Water Resources Research, 2012,48(1):182-205. |
[25] | Liu ., Peters-Lidard C D, Kumar S, et al. Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska[J]. Advances in Water Resources, 2013,54:208-227. |
[26] |
Evensen G.The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003,53(4):343-367.
doi: 10.1007/s10236-003-0036-9 |
[27] | 唐志光,王建,李弘毅,等.青藏高原MODIS积雪面积比例产品的精度验证与去云研究[J].遥感技术与应用,2013,28(3):423-430. |
[ Tang Z ., Wang ., Li H ., et al.Accuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan Plateau[J]. Remote Sensing Technology and Application, 2013,28(3):423-430. ] | |
[28] | Pan ., Li ., Shi ., et al.Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China[J]. Frontiers of Earth Science, 2012,6(3):314-323. |
[29] |
Pan X ., Li X.Validation of WRF model on simulating forcing data for Heihe River Basin[J]. Science in Cold and Arid Regions, 2011,3(4):344-357.
doi: 10.3724/SP.J.1226.2011.00344 |
[30] |
Donald ., Soulis ., Kouwen ., et al.A land cover-based snow cover representation for distributed hydrologic models[J]. Water Resources Research, 1995,31(4):995-1009.
doi: 10.1029/94WR02973 |
[31] | Liston G ., Elder K.A distributed snow-evolution modeling system (SnowModel)[J]. Journal of Hydrometeorology, 2006,7(6):1256-1276. |
[32] |
Evensen G.Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans (1978-2012), 1994,99(C5):10143-10162.
doi: 10.1029/94JC00572 |
[33] | Burgers ., Van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 1998,126(6):1719-1724. |
[34] | 梁顺林,李新,谢先红.陆面观测、模拟与数据同化[M].北京:高等教育出版社,2013:97-100. |
[1] | 胡汝骥. 中国积雪与雪灾防治[M].北京:中国环境出版社,2013. |
[ Hu R J.Snow and its disaster control in china[M]. Beijing: China Environmental Press, 2013. ] | |
[2] |
Foster J ., Sun ., Walker J ., et al.Quantifying the uncertainty in passive microwave snow water equivalent observations[J]. Remote Sensing of Environment, 2005,9(2):187-203.
doi: 10.1016/j.rse.2004.09.012 |
[3] |
Groisman P ., Karl T ., Knight R W.Observed impact of snow cover on the heat-balance and the rise of continental spring temperatures[J]. Science, 1994,263(5144):198-200.
doi: 10.1126/science.263.5144.198 pmid: 17839175 |
[4] | Pu ., Xu L.MODIS/Terra observed snow cover over the Tibet Plateau: distribution, variation and possible connection with the East Asian Summer Monsoon (EASM)[J]. Theoretical and Applied Climatology, 2009,97(3-4):265-278. |
[5] | Zhao ., Moore G W K. On the relationship between Tibetan snow cover, the Tibetan plateau monsoon and the Indian summer monsoon[J]. Geophysical Research Letters, 2004,31(14):101-111. |
[6] |
Seol K-., Hong S-Y.Relationship between the Tibetan snow in spring and the East Asian summer monsoon in 2003: a global and regional modeling study[J]. Journal of Climate, 2009,22(8):2095-2110.
doi: 10.1175/2008JCLI2496.1 |
[7] | Immerzeel W ., Bierkens M F P. Seasonal prediction of monsoon rainfall in three Asian river basins: the importance of snow cover on the Tibetan Plateau[J]. International Journal of Climatology, 2010,30(12):1835-1842. |
[8] |
Gao ., Williams M ., Fu ., et al.Spatiotemporal distribution of snow in eastern Tibet and the response to climate change[J]. Remote Sensing of Environment, 2012,121(138):1-9.
doi: 10.1016/j.rse.2012.01.006 |
[9] | Tang ., Wang ., Li ., et al.Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011[J]. Journal of Applied Remote Sensing, 2013,1:073582-073582. |
[10] |
Hall D ., Riggs G ., Salomonson V V.Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995,54(2):127-140.
doi: 10.1016/0034-4257(95)00137-P |
[11] |
Salomonson ., Appel I.Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment, 2004,89(3):351-360.
doi: 10.1016/j.rse.2003.10.016 |
[12] | Riggs G, Hall D, Salomonson V. MODIS snow products user guide to collection 5[EB/OL]. . |
[13] |
Chang ., Foster ., Hall ., et al.Snow water equivalent estimation by microwave radiometry[J]. Cold Regions Science and Technology, 1982,5(3):259-267.
doi: 10.1016/0165-232X(82)90019-2 |
[14] |
Armstrong R ., Brodzik M J.Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms[J]. Annals of Glaciology, 2002,34(1):38-44.
doi: 10.3189/172756402781817428 |
[15] | 车涛,李新.利用被动微波遥感数据反演我国积雪深度及其精度评价[J].遥感技术与应用,2004,19(5):301-306. |
[ Che ., Li X.Retrieval of snow depth in china by passive microwave remote sensing data and its accuracy assessment[J]. Remote Sensing Technology and Application, 2004,19(5):301-306. ] | |
[16] | 车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368. |
[ Che ., Li ., Gao F.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data[J]. Journal of Glaciology and Geocryology, 2004,26(3):363-368. ] | |
[17] | 车涛. 积雪属性非均匀性对被动微波遥感积雪的影响[J].遥感技术与应用,2013,28(1):27-33. |
[ Che T.Impacts on passive microwave remote sensing of snow from heterogeneities of snow properties[J]. Remote Sensing Technology and Application, 2013,28(1):27-33. ] | |
[18] |
Frei ., Tedesco ., Lee ., et al.A review of global satellite-derived snow products[J]. Advances in Space Research, 2012,50(8):1007-1029.
doi: 10.1016/j.asr.2011.12.021 |
[19] |
李弘毅,王建.积雪水文模拟中的关键问题及其研究进展[J].冰川冻土,2013,35(2):430-437.
doi: 10.7522/j.issn.1000-0240.2013.0051 |
[ Li H ., Wang J.Key research topics and their advances on modeling snow hydrological processes[J]. Journal of Glaciology and Geocryology, 2013,35(2):430-437. ]
doi: 10.7522/j.issn.1000-0240.2013.0051 |
|
[20] |
Clark M ., Slater A ., Barrett A ., et al.Assimilation of snow covered area information into hydrologic and land-surface models[J]. Advances in water resources, 2006,29(8):1209-1221.
doi: 10.1016/j.advwatres.2005.10.001 |
[21] | Su ., Yang Z ., Niu G ., et al.Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter[J]. Journal of Geophysical Research: Atmospheres, 2008,113(D8):693-702. |
[22] |
Andreadis K ., Lettenmaier D P.Assimilating remotely sensed snow observations into a macroscale hydrology model[J]. Advances in water resources, 2006,29(6):872-886.
doi: 10.1016/j.advwatres.2005.08.004 |
[23] |
Dong ., Walker J ., Houser P ., et al.Scanning multichannel microwave radiometer snow water equivalent assimilation[J]. Journal of Geophysical Research: Atmospheres, 2007,112(D7):277-287.
doi: 10.1029/2006JD007209 |
[34] | [ Liang S ., Li ., Xie X H. Land Surface Observation, Modeling and Data Assimilation[M]. Beijing: Higher Education Press, 2013:97-100. ] |
[1] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[2] | 闵杰, 张永生, 于英, 吕可枫, 王自全, 张磊. 增强型遥感影像SRGAN算法及其在三维重建精度提升中的应用[J]. 地球信息科学学报, 2022, 24(8): 1631-1644. |
[3] | 徐富宝, 范建容, 张茜彧, 杨超, 刘佳丽. 融入土壤湿度指标的青藏高原近地表土壤冻融机器学习监测算法[J]. 地球信息科学学报, 2022, 24(12): 2404-2419. |
[4] | 白磊, 张帆, 尚明, 师春香, 孙帅, 刘丽珺, 文元桥, 苏传程. 基于格点数据的1961—2018年中国多种积温时空变化研究[J]. 地球信息科学学报, 2021, 23(8): 1446-1460. |
[5] | 葛中曦, 黄静, 赖佩玉, 郝斌飞, 赵银军, 马明国. 耕地复种指数遥感监测研究进展[J]. 地球信息科学学报, 2021, 23(7): 1169-1184. |
[6] | 王宇琦, 沈润平, 黄安奇, 周旻悦. 2001—2017年中国不同耕作区重建MODIS LAI时空动态[J]. 地球信息科学学报, 2021, 23(4): 658-669. |
[7] | 贾伟, 王静爱, 史培军, 马伟东. 青藏高原冰雪消融区岩漠动态变化遥感监测研究现状与展望[J]. 地球信息科学学报, 2021, 23(10): 1715-1727. |
[8] | 刘新, 赵宁, 郭金运, 郭斌. 基于LSTM神经网络的青藏高原月降水量预测[J]. 地球信息科学学报, 2020, 22(8): 1617-1629. |
[9] | 连丽聪, 万智巍, 鞠民, 贾玉连, 洪祎君, 蒋梅鑫, 曾峰海. 民国中期湖南洞庭湖区耕地空间格局重建[J]. 地球信息科学学报, 2020, 22(5): 989-996. |
[10] | 易嘉伟, 杜云艳, 涂文娜. 基于位置大数据的国庆假期青藏高原人群分布 时空变化模式挖掘[J]. 地球信息科学学报, 2019, 21(9): 1367-1381. |
[11] | 孙思奥,任宇飞,张蔷. 多尺度视角下的青藏高原水资源短缺估算及空间格局[J]. 地球信息科学学报, 2019, 21(9): 1308-1317. |
[12] | 鲍超,刘若文. 青藏高原城镇体系的时空演变[J]. 地球信息科学学报, 2019, 21(9): 1330-1340. |
[13] | 王振波,梁龙武,褚昕阳,李嘉欣. 青藏高原旅游经济与生态环境协调效应测度及 交互胁迫关系验证[J]. 地球信息科学学报, 2019, 21(9): 1352-1366. |
[14] | 戚伟. 青藏高原城镇化格局的时空分异特征及影响因素[J]. 地球信息科学学报, 2019, 21(8): 1198-1206. |
[15] | 刘子川,冯险峰,武爽,孔玲玲,姚玄楚. 青藏高原城乡建设用地和生态用地转移时空格局[J]. 地球信息科学学报, 2019, 21(8): 1207-1217. |
|