地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (7): 941-950.doi: 10.3724/SP.J.1047.2016.00941
唐志光1(), 李弘毅2, 王建2, 梁继1, 李朝奎1, 车涛2, 王欣1
收稿日期:
2015-06-29
修回日期:
2015-10-28
出版日期:
2016-07-15
发布日期:
2016-07-19
作者简介:
作者简介:唐志光(1985-),男,湖南邵阳人,博士,讲师,主要从事冰冻圈遥感研究。E-mail:
基金资助:
TANG Zhiguang1,*(), LI Hongyi2, WANG Jian2, LIANG Ji1, LI Chaokui1, CHE Tao2, WANG Xin1
Received:
2015-06-29
Revised:
2015-10-28
Online:
2016-07-15
Published:
2016-07-19
Contact:
TANG Zhiguang
E-mail:tangzhg11@lzb.ac.cn
摘要:
青藏高原地形复杂,积雪时空分布异质性较强且大部分地区积雪较薄,而被动微波遥感因其空间分辨率低以及雪深反演中的不确定性,极大地限制了其反演青藏高原雪深的精度。本文尝试将多源遥感数据以及与积雪模型(SnowModel)相结合,来重建更高质量的青藏高原雪深数据。首先,利用MODIS积雪面积比例产品,根据构建的积雪衰减曲线以及经验的融合规则对低分辨率被动微波雪深进行了降尺度;然后,结合MODIS/被动微波融合雪深数据和SnowModel对研究区进行雪深数据同化实验;最后,利用地面站实测雪深数据对MODIS/被动微波融合雪深以及同化输出雪深的精度进行了分析和对比。结果表明,基于数据同化方法得到的雪深数据更接近地面观测雪深值,通过均方根误差以及相关系数的对比,同化雪深结果优于MODIS/被动微波融合雪深结果。
唐志光, 李弘毅, 王建, 梁继, 李朝奎, 车涛, 王欣. 基于多源数据的青藏高原雪深重建[J]. 地球信息科学学报, 2016, 18(7): 941-950.
TANG Zhiguang,LI Hongyi,WANG Jian,LIANG Ji,LI Chaokui,CHE Tao,WANG Xin. Reconstruction of Snow Depth over the Tibetan Plateau Based on Muti-source Data[J]. Journal of Geo-information Science, 2016, 18(7): 941-950.
[24] | De Lannoy G ., Reichle R ., Arsenault K ., et al. Multiscale assimilation of advanced microwave scanning radiometer-EOS snow water equivalent and moderate resolution imaging spectroradiometer snow cover fraction observations in northern Colorado[J]. Water Resources Research, 2012,48(1):182-205. |
[25] | Liu ., Peters-Lidard C D, Kumar S, et al. Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska[J]. Advances in Water Resources, 2013,54:208-227. |
[26] |
Evensen G.The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003,53(4):343-367.
doi: 10.1007/s10236-003-0036-9 |
[27] | 唐志光,王建,李弘毅,等.青藏高原MODIS积雪面积比例产品的精度验证与去云研究[J].遥感技术与应用,2013,28(3):423-430. |
[ Tang Z ., Wang ., Li H ., et al.Accuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan Plateau[J]. Remote Sensing Technology and Application, 2013,28(3):423-430. ] | |
[28] | Pan ., Li ., Shi ., et al.Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China[J]. Frontiers of Earth Science, 2012,6(3):314-323. |
[29] |
Pan X ., Li X.Validation of WRF model on simulating forcing data for Heihe River Basin[J]. Science in Cold and Arid Regions, 2011,3(4):344-357.
doi: 10.3724/SP.J.1226.2011.00344 |
[30] |
Donald ., Soulis ., Kouwen ., et al.A land cover-based snow cover representation for distributed hydrologic models[J]. Water Resources Research, 1995,31(4):995-1009.
doi: 10.1029/94WR02973 |
[31] | Liston G ., Elder K.A distributed snow-evolution modeling system (SnowModel)[J]. Journal of Hydrometeorology, 2006,7(6):1256-1276. |
[32] |
Evensen G.Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans (1978-2012), 1994,99(C5):10143-10162.
doi: 10.1029/94JC00572 |
[33] | Burgers ., Van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 1998,126(6):1719-1724. |
[34] | 梁顺林,李新,谢先红.陆面观测、模拟与数据同化[M].北京:高等教育出版社,2013:97-100. |
[1] | 胡汝骥. 中国积雪与雪灾防治[M].北京:中国环境出版社,2013. |
[ Hu R J.Snow and its disaster control in china[M]. Beijing: China Environmental Press, 2013. ] | |
[2] |
Foster J ., Sun ., Walker J ., et al.Quantifying the uncertainty in passive microwave snow water equivalent observations[J]. Remote Sensing of Environment, 2005,9(2):187-203.
doi: 10.1016/j.rse.2004.09.012 |
[3] |
Groisman P ., Karl T ., Knight R W.Observed impact of snow cover on the heat-balance and the rise of continental spring temperatures[J]. Science, 1994,263(5144):198-200.
doi: 10.1126/science.263.5144.198 pmid: 17839175 |
[4] | Pu ., Xu L.MODIS/Terra observed snow cover over the Tibet Plateau: distribution, variation and possible connection with the East Asian Summer Monsoon (EASM)[J]. Theoretical and Applied Climatology, 2009,97(3-4):265-278. |
[5] | Zhao ., Moore G W K. On the relationship between Tibetan snow cover, the Tibetan plateau monsoon and the Indian summer monsoon[J]. Geophysical Research Letters, 2004,31(14):101-111. |
[6] |
Seol K-., Hong S-Y.Relationship between the Tibetan snow in spring and the East Asian summer monsoon in 2003: a global and regional modeling study[J]. Journal of Climate, 2009,22(8):2095-2110.
doi: 10.1175/2008JCLI2496.1 |
[7] | Immerzeel W ., Bierkens M F P. Seasonal prediction of monsoon rainfall in three Asian river basins: the importance of snow cover on the Tibetan Plateau[J]. International Journal of Climatology, 2010,30(12):1835-1842. |
[8] |
Gao ., Williams M ., Fu ., et al.Spatiotemporal distribution of snow in eastern Tibet and the response to climate change[J]. Remote Sensing of Environment, 2012,121(138):1-9.
doi: 10.1016/j.rse.2012.01.006 |
[9] | Tang ., Wang ., Li ., et al.Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011[J]. Journal of Applied Remote Sensing, 2013,1:073582-073582. |
[10] |
Hall D ., Riggs G ., Salomonson V V.Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995,54(2):127-140.
doi: 10.1016/0034-4257(95)00137-P |
[11] |
Salomonson ., Appel I.Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment, 2004,89(3):351-360.
doi: 10.1016/j.rse.2003.10.016 |
[12] | Riggs G, Hall D, Salomonson V. MODIS snow products user guide to collection 5[EB/OL]. . |
[13] |
Chang ., Foster ., Hall ., et al.Snow water equivalent estimation by microwave radiometry[J]. Cold Regions Science and Technology, 1982,5(3):259-267.
doi: 10.1016/0165-232X(82)90019-2 |
[14] |
Armstrong R ., Brodzik M J.Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms[J]. Annals of Glaciology, 2002,34(1):38-44.
doi: 10.3189/172756402781817428 |
[15] | 车涛,李新.利用被动微波遥感数据反演我国积雪深度及其精度评价[J].遥感技术与应用,2004,19(5):301-306. |
[ Che ., Li X.Retrieval of snow depth in china by passive microwave remote sensing data and its accuracy assessment[J]. Remote Sensing Technology and Application, 2004,19(5):301-306. ] | |
[16] | 车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368. |
[ Che ., Li ., Gao F.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data[J]. Journal of Glaciology and Geocryology, 2004,26(3):363-368. ] | |
[17] | 车涛. 积雪属性非均匀性对被动微波遥感积雪的影响[J].遥感技术与应用,2013,28(1):27-33. |
[ Che T.Impacts on passive microwave remote sensing of snow from heterogeneities of snow properties[J]. Remote Sensing Technology and Application, 2013,28(1):27-33. ] | |
[18] |
Frei ., Tedesco ., Lee ., et al.A review of global satellite-derived snow products[J]. Advances in Space Research, 2012,50(8):1007-1029.
doi: 10.1016/j.asr.2011.12.021 |
[19] |
李弘毅,王建.积雪水文模拟中的关键问题及其研究进展[J].冰川冻土,2013,35(2):430-437.
doi: 10.7522/j.issn.1000-0240.2013.0051 |
[ Li H ., Wang J.Key research topics and their advances on modeling snow hydrological processes[J]. Journal of Glaciology and Geocryology, 2013,35(2):430-437. ]
doi: 10.7522/j.issn.1000-0240.2013.0051 |
|
[20] |
Clark M ., Slater A ., Barrett A ., et al.Assimilation of snow covered area information into hydrologic and land-surface models[J]. Advances in water resources, 2006,29(8):1209-1221.
doi: 10.1016/j.advwatres.2005.10.001 |
[21] | Su ., Yang Z ., Niu G ., et al.Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter[J]. Journal of Geophysical Research: Atmospheres, 2008,113(D8):693-702. |
[22] |
Andreadis K ., Lettenmaier D P.Assimilating remotely sensed snow observations into a macroscale hydrology model[J]. Advances in water resources, 2006,29(6):872-886.
doi: 10.1016/j.advwatres.2005.08.004 |
[23] |
Dong ., Walker J ., Houser P ., et al.Scanning multichannel microwave radiometer snow water equivalent assimilation[J]. Journal of Geophysical Research: Atmospheres, 2007,112(D7):277-287.
doi: 10.1029/2006JD007209 |
[34] | [ Liang S ., Li ., Xie X H. Land Surface Observation, Modeling and Data Assimilation[M]. Beijing: Higher Education Press, 2013:97-100. ] |
[1] | 戚伟. 青藏高原城镇化格局的时空分异特征及影响因素[J]. 地球信息科学学报, 2019, 21(8): 1198-1206. |
[2] | 刘子川,冯险峰,武爽,孔玲玲,姚玄楚. 青藏高原城乡建设用地和生态用地转移时空格局[J]. 地球信息科学学报, 2019, 21(8): 1207-1217. |
[3] | 王林江, 吴炳方, 张淼, 邢强. 关键生育期冬小麦和油菜遥感分类方法[J]. 地球信息科学学报, 2019, 21(7): 1121-1131. |
[4] | 谭深, 吴炳方, 张鑫. 基于Google Earth Engine与多源遥感数据的海南水稻分类研究[J]. 地球信息科学学报, 2019, 21(6): 937-947. |
[5] | 王森援, 蔡国榕, 王宗跃, 吴云东. 基于加权约束的单体建筑物点云表面重建算法[J]. 地球信息科学学报, 2019, 21(5): 654-662. |
[6] | 郑海亮, 房世峰, 刘成程, 吴金华, 杜加强. 青藏高原月NDVI时空动态变化及其对气候变化的 响应[J]. 地球信息科学学报, 2019, 21(2): 201-214. |
[7] | 刘源, 秦军, 阳坤, 韩孟磊, 拉珠, 赵龙. 3种土壤冻融判别算法在青藏高原的分类精度评价[J]. 地球信息科学学报, 2018, 20(8): 1178-1189. |
[8] | 冯素云, 张凯选, 鹿琳琳. “海上丝绸之路”超大城市环境变化遥感分析[J]. 地球信息科学学报, 2018, 20(5): 602-612. |
[9] | 杨珂含, 姚方方, 董迪, 董文, 骆剑承. 青藏高原湖泊面积动态监测[J]. 地球信息科学学报, 2017, 19(7): 972-982. |
[10] | 李治, 杨晓梅, 孟樊, 陈曦, 杨丰硕. 城市建成区多源遥感协同提取方法研究[J]. 地球信息科学学报, 2017, 19(11): 1522-1529. |
[11] | 伍阳,程亮,陈焱明,李满春. 利用机载LiDAR数据重建大型复杂立交桥三维模型[J]. 地球信息科学学报, 2016, 18(9): 1249-1258. |
[12] | 王思洁,方莉娜,陈崇成,黄明伟. 基于结构化场景的单幅图像建筑物三维重建[J]. 地球信息科学学报, 2016, 18(8): 1022-1029. |
[13] | 叶庆华, 程维明, 赵永利, 宗继彪, 赵瑞. 青藏高原冰川变化遥感监测研究综述[J]. 地球信息科学学报, 2016, 18(7): 920-930. |
[14] | 汪箫悦, 王思远, 尹航, 彭瑶瑶. 2002-2012年青藏高原积雪物候变化及其对气候的响应[J]. 地球信息科学学报, 2016, 18(11): 1573-1580. |
[15] | 杨洋, 潘懋, 吴耕宇, 孙颖, 李魁星. 一种新的轮廓线三维地质表面重建方法[J]. 地球信息科学学报, 2015, 17(3): 253-259. |
|