地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (10): 1399-1409.doi: 10.3724/SP.J.1047.2016.01399
收稿日期:
2015-09-14
修回日期:
2015-12-20
出版日期:
2016-10-25
发布日期:
2016-10-25
通讯作者:
付迎春
E-mail:daishusysu@foxmail.com;fuyc@scnu.edu.cn
作者简介:
作者简介:戴 舒(1990-),男,江西抚州人,硕士生,主要从事城市信息处理与定量遥感研究。E-mail:
基金资助:
DAI Shu(), FU Yingchun*(
), ZHAO Yaolong
Received:
2015-09-14
Revised:
2015-12-20
Online:
2016-10-25
Published:
2016-10-25
Contact:
FU Yingchun
E-mail:daishusysu@foxmail.com;fuyc@scnu.edu.cn
摘要:
不透水面是城市区域中一种典型的土地覆盖类型,是衡量城市环境质量和城市化水平的重要标志之一。与传统基于像元级的遥感研究方法相比,不透水面百分比(Impervious Surface Percent,ISP)的估算可以进入像元内部,获得更准确的城市信息。本文应用Cubist模型树,对Landsat TM的原始波段变量(除热红外波段),建立ISP估算的基础模型(Base Cubist-ISP)。通过基于模型树的集成学习优化算法和加入相邻时相影像的波段变量中值,以削弱噪声的影响。然后,优选热红外波段和各种衍生变量,并进行属性精简,继而应用集成学习算法得到的参数和精简后的变量建立ISP估算的优化模型(Optimal Cubist-ISP)。对广东省广州市海珠区的实验结果表明,Optimal Cubist-ISP模型估算不透水面的整体均方根误差(RMSE)为12.98%,决定系数(R2)为0.90,精度明显优于Base Cubist-ISP模型,RMSE降低约5.03%,ISP在透水面区域被高估和高密度不透水面区域被低估的现象得到改善。本文提出的基于Cubist模型树建立ISP遥感估算的模型及优化方法可以适用于城市区ISP的提取。
戴舒, 付迎春, 赵耀龙. 基于Cubist模型树的城市不透水面百分比遥感估算模型[J]. 地球信息科学学报, 2016, 18(10): 1399-1409.DOI:10.3724/SP.J.1047.2016.01399
DAI Shu,FU Yingchun,ZHAO Yaolong. The Remote Sensing Model for Estimating Urban Impervious Surface Percentage Based on the Cubist Model Tree[J]. Journal of Geo-information Science, 2016, 18(10): 1399-1409.DOI:10.3724/SP.J.1047.2016.01399
表3
各种衍生自变量组合的精度评价指标MAE和RMSE"
实验 | MAE/(%) | RMSE/(%) | 输入的自变量(opt_b7:b1-6_med,su_b7) |
---|---|---|---|
1 | 10.41 | 15.39 | opt_b7 |
2 | 10.34 | 15.42 | opt_b7,NDVI |
3 | 9.82 | 14.45 | opt_b7,NDVI_max |
4 | 8.77 | 12.67 | opt_b7,NDVI_max,NDBI,NDBaI,TC,Texture |
5 | 9.04 | 13.21 | opt_b7,NDBI,NDBaI,TC,Texture |
6 | 8.74 | 12.67 | opt_b7,NDVI_max,NDBaI,TC,Texture |
7 | 8.76 | 12.82 | opt_b7,NDVI_max,NDBI,TC,Texture |
8 | 8.84 | 12.72 | opt_b7,NDVI_max,NDBI,NDBaI,Texture |
9 | 9.38 | 13.83 | opt_b7,NDVI_max,NDBI,NDBaI,TC |
[1] |
Yuan F, Bauer M E.Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007,106(3):375-386.
doi: 10.1016/j.rse.2006.09.003 |
[2] | Arnold Jr C L, Gibbons C J. Impervious surface coverage: the emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258. |
[3] |
Weng Q.Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends[J]. Remote Sensing of Environment, 2012,117:34-49.
doi: 10.1016/j.rse.2011.02.030 |
[4] |
Yang X J.Estimating landscape imperviousness index from satellite imagery[J]. IEEE Geoscience & Remote Sensing Letters, 2006,3(1):6-9.
doi: 10.1109/LGRS.2005.853929 |
[5] | Bauer M E, Loffelholz B C, Wilson B.Estimating and mapping impervious surface area by regression analysis of Landsat imagery[A]. In: Weng Q. Remote sensing of impervious surfaces[M]. Boca Rotan, FL: CRC Press, 2008:39-58. |
[6] |
Ridd M K.Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities[J]. International Journal of Remote Sensing, 1995,16(12):2165-2185.
doi: 10.1080/01431169508954549 |
[7] |
Wu C S, Murray A T.Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(4):493-505.
doi: 10.1016/S0034-4257(02)00136-0 |
[8] | Flanagan M, Civco D L.Subpixel impervious surface mapping[C]. Proceedings of ASPRS Annual Convention, 2001. |
[9] | Hu X F, Weng Q.Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks[J]. Remote Sensing of Environment, 2009,113(10):2089-2102. |
[10] |
Xian G, Crane M.Assessments of urban growth in the Tampa Bay watershed using remote sensing data[J]. Remote Sensing of Environment, 2005,97(2):203-215.
doi: 10.1016/j.rse.2005.04.017 |
[11] |
廖明生,江利明,林珲,等.基于CART集成学习的城市不透水层百分比遥感估算[J].武汉大学学报·信息科学版,2007,32(12):1099-1102.
doi: 10.3969/j.issn.1671-8860.2007.12.003 |
[ Liao M, Jiang L, Lin H, et al.Estimating urban impervious surface percent using boosting as a refinement of CART analysis[J]. Geomatics and Information Science of Wuhan University, 2007,32(12):1099-1102. ]
doi: 10.3969/j.issn.1671-8860.2007.12.003 |
|
[12] |
朱艾莉,吕成文.城市不透水面遥感提取方法研究进展[J].安徽师范大学学报:自然科学版,2010,33(5):485-489.
doi: 10.3969/j.issn.1001-2443.2010.05.019 |
[ Zhu A, Lu C.Advances in the methods of extracting urban impervious surface based on remote sensing[J]. Journal of Anhui Normal University: Natural Science, 2010,33(5):485-489. ]
doi: 10.3969/j.issn.1001-2443.2010.05.019 |
|
[13] | Quinlan J R.Learning with continuous classes[C]. Proceedings of Australian Joint Conference on Artificial Intelligence World Scientific, 1992:343-348. |
[14] | 高志宏,张路,李新延,等.城市土地利用变化的不透水面覆盖度检测方法[J].遥感学报,2010,14(3):593-606. |
[ Gao Z, Zhang L, Li X, et al.Detection and analysis of urban land use changes through multi-temporal impervious surface mapping[J]. Journal of Remote Sensing, 2010,14(3):593-606. ] | |
[15] |
Yang L, Huang C Q, Wylie B K, et al.An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery[J]. Canadian Journal of Remote Sensing, 2003,29(2):230-240.
doi: 10.5589/m02-098 |
[16] | Xian G.Mapping impervious surfaces using classification and regression tree algorithm[A]. In: Weng Q. Remote sensing of impervious surfaces[M]. Boca Rotan, FL: CRC Press, 2008:39-58. |
[17] |
Im J, Lu Z Y, Rhee J, et al.Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data[J]. Remote Sensing of Environment, 2012,117:102-113.
doi: 10.1016/j.rse.2011.06.024 |
[18] |
Walton J T.Subpixel urban land cover estimation: comparing Cubist, random forests, and support vector regression[J]. Photogrammetric Engineering & Remote Sensing, 2008,74:1213-1222.
doi: 10.1007/s00190-008-0219-8 |
[19] | USGS. Landsat higher level science data products[ER/OL]. . |
[20] | Schmidt G, Jenkerson C, Masek J, et al.Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description (No. 2013-1057)[R]. US Geological Survey, 2013. |
[21] | Quinlan J R.Combining instance-based and model-based learning[C]. Machine Learning Proceedings, 1993:236-243. |
[22] | Txomin H, Michael A W, Joanne C W, et al.An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites[J]. Remote Sensing of Environment, 2015,158:220-234. |
[23] |
Neil F.Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median)[J]. Remote Sensing, 2013,5(12):6481-6500.
doi: 10.3390/rs5126481 |
[24] |
Weng Q.A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China[J]. International Journal of Remote Sensing, 2001,22(10):1999-2014.
doi: 10.1080/713860788 |
[25] |
Price J C.Using spatial context in satellite data to infer regional scale evapotranspiration[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990,28(5):940-948.
doi: 10.1109/36.58983 |
[26] |
Zha Y, Gao J, Ni S.Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003,24(3):583-594.
doi: 10.1080/01431160304987 |
[27] |
Zhao H M, Chen X L.Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+[J]. Geoscience & Remote Sensing Symposium Proceedings, 2005,3:1666-1668.
doi: 10.1109/IGARSS.2005.1526319 |
[28] |
Crist E P.A TM tasseled cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985,17(85):301-306.
doi: 10.1016/0034-4257(85)90102-6 |
[29] |
徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报,2005,9(5):589-595.
doi: 10.3321/j.issn:1007-4619.2005.05.012 |
[ Xu H Q.A study on iInformation extraction of water body with the modified normalized difference water Index(MNDWI)[J]. Journal of Remote Sensing,2005,9(5):589-595. ]
doi: 10.3321/j.issn:1007-4619.2005.05.012 |
[1] | 帅艳民, 马现伟, 曲歌, 邵聪颖, 刘涛, 刘守民, 黄华兵, 谷玲霄, 拉提帕·吐尔汗江, 梁继, 李玲. 协同多时相波谱特征的不透水面信息级联提取[J]. 地球信息科学学报, 2021, 23(1): 171-186. |
[2] | 李培林, 刘小平, 黄应淮, 张鸿辉. 基于GEE平台的广州市主城区不透水面时间序列提取[J]. 地球信息科学学报, 2020, 22(3): 638-648. |
[3] | 蔡博文,王树根,王磊,邵振峰. 基于深度学习模型的城市高分辨率遥感影像 不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1420-1429. |
[4] | 陈冰倩, 张友水, 程璟媛, 赵雪. 福州市地表温度热点及时空变化分析[J]. 地球信息科学学报, 2019, 21(5): 710-719. |
[5] | 樊智宇, 詹庆明, 刘慧民, 杨晨, 夏宇. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019, 21(2): 226-235. |
[6] | 冯珊珊,樊风雷. Landsat/OLI与夜间灯光数据在提取城市不透水面中的精度差异分析[J]. 地球信息科学学报, 2019, 21(10): 1608-1618. |
[7] | 向超, 朱翔, 胡德勇, 乔琨, 陈姗姗. 近20年京津唐地区不透水面变化的遥感监测[J]. 地球信息科学学报, 2018, 20(5): 684-693. |
[8] | 宋明明, 都金康, 郑文龙, 李成蹊, 卞国栋. 秦淮河流域近30年不透水面景观格局时空演变研究[J]. 地球信息科学学报, 2017, 19(2): 238-247. |
[9] | 梁志承, 赵耀龙, 付迎春. 耦合蚁群算法和SCS-CN水文模型的城市不透水面空间格局优化[J]. 地球信息科学学报, 2017, 19(10): 1315-1326. |
[10] | 周小驰, 刘咏梅, 杨海娟. 西安市城市边缘区空间识别与边界划分[J]. 地球信息科学学报, 2017, 19(10): 1327-1335. |
[11] | 程熙, 吴炜, 夏列钢, 罗瑞, 沈占锋. 集成夜间灯光数据与Landsat TM影像的不透水面自动提取方法研究[J]. 地球信息科学学报, 2017, 19(10): 1364-1374. |
[12] | 潘涛, 张弛, 杜国明, 董金玮, 迟文峰. 城乡不透水面增长格局及地表温度的响应特征研究[J]. 地球信息科学学报, 2017, 19(1): 134-142. |
[13] | 王靓, 孟庆岩, 吴俊, 张佳晖, 张琳琳. 2005-2014年北京市主要城建区热岛强度时空格局分析[J]. 地球信息科学学报, 2015, 17(9): 1047-1054. |
[14] | 邹春城, 张友水, 黄欢欢. 福州市城市不透水面景观指数与城市热环境关系分析[J]. 地球信息科学学报, 2014, 16(3): 490-498. |
|