地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (11): 1529-1536.doi: 10.3724/SP.J.1047.2016.01529
收稿日期:
2015-12-16
修回日期:
2016-03-04
出版日期:
2016-11-20
发布日期:
2016-11-20
通讯作者:
冯险峰
E-mail:xiaox.13s@igsnrr.ac.cn;fengxf@lreis.ac.cn
作者简介:
作者简介:肖潇(1993-),女,湖南衡阳人,硕士生,研究方向为生态遥感。E-mail:
基金资助:
XIAO Xiao(), FENG Xianfeng*(
), SUN Qingling
Received:
2015-12-16
Revised:
2016-03-04
Online:
2016-11-20
Published:
2016-11-20
Contact:
FENG Xianfeng
E-mail:xiaox.13s@igsnrr.ac.cn;fengxf@lreis.ac.cn
摘要:
火烧迹地监测不仅可以反映火灾对生态系统的影响情况及损失信息,还能为全球碳循环研究提供重要的数据支持。本文利用MODIS地表反射率产品(MOD09A1)的近红外和短波红外波段构建的归一化燃烧率指数(NBR),计算前后2期影像的NBR差值,并在光谱指数差分法的基础上,结合MODIS植被数据产品(MOD44B)提供的植被覆盖度信息,设置规则提取火烧迹地。本文选择西伯利亚地区东南部的林地、草地、农田等不同生态系统的交界地带作为实验区,利用本文算法提取该区域的火烧迹地。实验结果表明:(1)本文算法的火烧迹地提取效果较好,优于MODIS火烧迹地产品(MCD45A1),kappa系数由0.70提高到0.75;(2)利用林木覆盖度、草本覆盖度数据,可以减少误判,提高火烧迹地提取的精度,kappa系数分别由0.69、0.73都提高到0.75。
肖潇, 冯险峰, 孙庆龄. 利用MODIS影像提取火烧迹地方法的研究[J]. 地球信息科学学报, 2016, 18(11): 1529-1536.DOI:10.3724/SP.J.1047.2016.01529
XIAO Xiao,FENG Xianfeng,SUN Qingling. Burned Area Detection in the Ecosystem Transition Zone Using MODIS Data[J]. Journal of Geo-information Science, 2016, 18(11): 1529-1536.DOI:10.3724/SP.J.1047.2016.01529
表1
MOD09A1质量评价数据取值"
位数 | 参数名称 | 可取值 | 含义 |
---|---|---|---|
2 | 云阴影(Cloud shadow) | 0 | 无(No) |
3-5 | 陆地/水(Land/water flag) | 001 | 陆地(Land) |
6-7 | 气溶胶(Aerosol quality) | 01 | 少(Low) |
10 | 平均(Average) | ||
8-9 | 卷云(Cirrus detected) | 00 | 无(No) |
01 | 少(Low) | ||
10 | 平均(Average) | ||
10 | 内部云算法(Internal cloud algorithm flag) | 0 | 无云(No cloud) |
12 | MOD35 雪/冰(snow/ice flag) | 0 | 无(No) |
15 | 内部雪掩膜(Internal snow mask) | 0 | 无雪(No snow) |
[1] | Pereira J M C, Sousa A M O, Sá A C L, et al. Regional-scale burnt area mapping in Southern Europe using NOAA-AVHRR 1 km data[A]. In: Remote Sensing of Large Wildfires[M]. Berlin: Springer Berlin Heidelberg, 1999:139-155. |
[2] |
周小成,汪小钦,高中灵.基于知识的多时相 TM 图像森林火烧迹地快速提取方法[J].灾害学,2005,20(2):22-26.
doi: 10.3969/j.issn.1000-811X.2005.02.005 |
[ Zhou X C, Wang X Q, Gao Z L.Method of fast extracting fire scars from multi-temporal TM images on the basis of knowledge available[J]. Journal of Catastrophology, 2005,20(2): 22-26. ]
doi: 10.3969/j.issn.1000-811X.2005.02.005 |
|
[3] | Mitri G H, Gi tas I Z. Fire type mapping using object-based classification of Ikonos imagery[J]. International Journal of Wildland Fire, 2006,15(4):457-462. |
[4] |
Koutsias N, Karteris M, Chuvico E.The use of intensity-hue-saturation transformation of Landsat-5 Thematic Mapper data for burned land mapping[J]. Photogrammetric Engineering and Remote Sensing, 2000,66(7):829-840.
doi: 10.1002/1099-1530(200007/09)11:3<267::AID-PPP350>3.0.CO;2-E |
[5] |
陈本清,徐涵秋.遥感技术在森林火灾信息提取中的应用[J].福州大学学报:自然科学版,2001,29(2):23-26.
doi: 10.3969/j.issn.1000-2243.2001.02.007 |
[ Chen B Q, Xu H Q.The application of remote sensing in extraction of forest burnt scar information[J]. Journal of Fuzhou University (Natural Science), 2001,29(2):23-26. ]
doi: 10.3969/j.issn.1000-2243.2001.02.007 |
|
[6] |
刘诚,李亚军,赵长海,等.气象卫星亚像元火点面积和亮温估算方法[J].应用气象学报,2004,15(3):273-280.
doi: 10.3969/j.issn.1001-7313.2004.03.003 |
[ Liu C, Li Y J, Zhao C H, et al. The method of evaluation sub-pixel size and temperature of fire spot in AVHRR data[J]. Journal of Applied Meteorological Science, 2004,15(3):273-280. ]
doi: 10.3969/j.issn.1001-7313.2004.03.003 |
|
[7] |
张顺谦,郭海燕,卿清涛.利用遥感监测亚像元分解遗传算法估算森林火灾面积[J].中国农业气象,2007,28(2):198-200.
doi: 10.3969/j.issn.1000-6362.2007.02.021 |
[ Zhang S Q, Guo H Y, Qing Q T.Estimate of forest fire area by using RAGA genetic algorithms in sub-pixel decompound based on remote sensing monitoring[J]. Chinese Journal of Agrometeorology, 2007,28(2):198-200. ]
doi: 10.3969/j.issn.1000-6362.2007.02.021 |
|
[8] |
Martín M P, Gómez I, Chuvieco E. Burnt Area Index (BAIM) for burned area discrimination at regional scale using MODIS data[J]. Forest Ecology and Management, 2006,234:S221.
doi: 10.1016/j.foreco.2006.08.248 |
[9] | Key C H, Benson N C.Measuring and remote sensing of burn severity[C]. US Geological Survey wildland fire workshop. Washington, DC: US Geological Survey, 2002,31:2-11. |
[10] |
Quintano C, Fernández-Manso A, Stein A, et al. Estimation of area burned by forest fires in Mediterranean countries: a remote sensing data mining perspective[J]. Forest Ecology and Management, 2011,262(8):1597-1607.
doi: 10.1016/j.foreco.2011.07.010 |
[11] |
Hilker T, Wulder M A, Coops N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009,113(8):1613-1627.
doi: 10.1016/j.rse.2009.03.007 |
[12] |
Mouillot F, Schultz M G, Yue C, et al. Ten years of global burned area products from spaceborne remote sensing—a review: analysis of user needs and recommendations for future developments[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,26:64-79.
doi: 10.1016/j.jag.2013.05.014 |
[13] |
Cahoon D R, Stocks B J, Levine J S, et al. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1994,99(D9):18627-18638.
doi: 10.1029/94JD01024 |
[14] |
尤慧,刘荣高,祝善友,等.加拿大北方森林火烧迹地遥感分析[J].地球信息科学学报,2013,15(4):597-603.
doi: 10.3724/SP.J.1047.2013.00597 |
[ You H, Liu R G, Zhu S Y, et al. Burned area detection in the Canadian boreal forest using MODIS imagery[J]. Journal of Geo-Information Science, 2013,15(4):597-603. ]
doi: 10.3724/SP.J.1047.2013.00597 |
|
[15] | Martín M P, Díaz Delgado R, Chuvieco E, et al. Burned land mapping using NOAA-AVHRR and TERRA-MODIS[C]. IV International Conference on Forest Fire Research, 2002:45. |
[16] |
Roy D P, Boschetti L, Justice C O, et al. The collection 5 MODIS burned area product - global evaluation by comparison with the MODIS active fire product[J]. Remote Sensing of Environment, 2008,112(9):3690-3707.
doi: 10.1016/j.rse.2008.05.013 |
[17] |
Garcia M J L, Caselles V. Mapping burns and natural reforestation using Thematic Mapper data[J]. Geocarto International, 1991,6(1):31-37.
doi: 10.1080/10106049109354290 |
[18] |
Loboda T, O'Neal K J, Csiszar I. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data[J]. Remote Sensing of Environment, 2007,109(4):429-442.
doi: 10.1016/j.rse.2007.01.017 |
[19] |
Epting J, Verbyla D, Sorbel B.Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+[J]. Remote Sensing of Environment, 2005,96(3-4):328-339.
doi: 10.1016/j.rse.2005.03.002 |
[20] |
Wagtendonk J W V, Root R R, Key C H. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity[J]. Remote Sensing of Environment, 2004,92(3):397-408.
doi: 10.1016/j.rse.2003.12.015 |
[21] |
胡海清,周振宝,焦燕.俄罗斯森林火灾现状统计分析[J].世界林业研究,2006,19(2):74-78.
doi: 10.3969/j.issn.1001-4241.2006.02.014 |
[ Hu H Q, Zhou Z B, Jiao Y.Statistical analysis on current status of forest fire in Russian Federation[J]. World Forest Research, 2006,19(2):74-78. ]
doi: 10.3969/j.issn.1001-4241.2006.02.014 |
|
[22] |
Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010,114(1):168-182.
doi: 10.1016/j.rse.2009.08.016 |
[23] |
Vermote E F, El Saleous N Z, Justice C O. Atmospheric correction of MODIS data in the visible to middle infrared: first results[J]. Remote Sensing of Environment, 2002,83(1):97-111.
doi: 10.1016/S0034-4257(02)00089-5 |
[24] | Hansen M C, DeFries R S, Townshend J R G, et al. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm[J]. Earth Interactions, 2003,7(10):1-15. |
[1] | 陈如如, 胡中民, 李胜功, 郭群. 不同数据源归一化植被指数在中国北方草原区的应用比较[J]. 地球信息科学学报, 2020, 22(9): 1910-1919. |
[2] | 李婉, 牛陆, 陈虹, 吴骅. 基于随机森林算法的地表温度鲁棒降尺度方法[J]. 地球信息科学学报, 2020, 22(8): 1666-1678. |
[3] | 阿依尼格尔·亚力坤, 买买提艾力·买买提依明, 刘素红, 杨帆, 何清, 刘永强. 新疆沙漠地区地表宽波段比辐射率遥感估算[J]. 地球信息科学学报, 2020, 22(8): 1743-1751. |
[4] | 龚围, 李丽, 柳钦火, 辛晓洲, 彭志晴, 邬明权, 牛铮, 田海峰. “一带一路”区域水电站工程生态环境影响遥感监测[J]. 地球信息科学学报, 2020, 22(7): 1424-1436. |
[5] | 陆彦蓉, 刘强, 李霞, 李秀红, 刘璐, 肖洒, 孙美莹. 全球250 m反照率产品算法及验证[J]. 地球信息科学学报, 2020, 22(2): 328-335. |
[6] | 刘艳霞, 冯莉, 田慧慧, 阳少奇. 中国气候舒适度时空分布特征分析[J]. 地球信息科学学报, 2020, 22(12): 2338-2347. |
[7] | 洪恬林, 李云梅, 吕恒, 孟斌, 毕顺, 周玲. 基于MODIS数据的太湖浮游植物物候变化及其对水表温度的响应[J]. 地球信息科学学报, 2020, 22(10): 1935-1945. |
[8] | 高黎明,张乐乐. 青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019, 21(9): 1318-1329. |
[9] | 程东亚,李旭东. 喀斯特地区植被覆盖度变化及地形与人口效应研究[J]. 地球信息科学学报, 2019, 21(8): 1227-1239. |
[10] | 左冰洁, 孙玉军. 南方亚热带季风区将乐县森林植被动态变化及其对气候变化的响应[J]. 地球信息科学学报, 2019, 21(6): 958-968. |
[11] | 胡顺石, 张辰璐, 彭雨龙, 谭子芳. 湖南省不同云状态的时空特征分析[J]. 地球信息科学学报, 2019, 21(5): 688-698. |
[12] | 李娅丽, 汪小钦, 陈芸芝, 王苗苗. 福建省地表温度与植被覆盖度的相关性分析[J]. 地球信息科学学报, 2019, 21(3): 445-454. |
[13] | 刘怡媛, 肖池伟, 李鹏, 刘影, 饶滴滴. 基于CRNBR物候算法的西双版纳橡胶成林提取及时空变化研究[J]. 地球信息科学学报, 2019, 21(3): 467-474. |
[14] | 平博, 孟云闪, 苏奋振. 面向GF-1 WFV数据和MODIS数据的时空融合算法对比分析[J]. 地球信息科学学报, 2019, 21(2): 157-167. |
[15] | 李杨, 王杰, 黄春林. 一种基于归一化扰动模型的积雪和植被覆盖度反演方法[J]. 地球信息科学学报, 2019, 21(12): 1955-1964. |
|