[1] |
Biljecki F, Ledoux H, Van Oosterom P.Transportation mode-base segmentation and classification of movement trajectories[J]. International Journal of Geographical Information Science, 2013,27(2):385-407.
doi: 10.1080/13658816.2012.692791
|
[2] |
Mountain D, Raper J.Modelling human spatio-temporal behaviour: A challenge for location-based services[C]//Proceedings of 6th International Conference on Geocomputation. Brisbane: Australia, 2001:24-26.
|
[3] |
Zheng Y, Chen Y, Li Q, et al.Understanding transportation modes based on GPS data for web applications[J]. Acm Transactions on the Web, 2010,4(1):495-507.
doi: 10.1145/1658373.1658374
|
[4] |
Lee J G, Han J, Li X, et al.TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering[J]. Proceedings of the Vldb Endowment, 2008,1(1):1081-1094.
doi: 10.14778/1453856.1453972
|
[5] |
Patel D.Incorporating duration and region association information in trajectory classification[J]. Journal of Location Based Services, 2012,7(4):246-271.
doi: 10.1109/ICDE.2012.72
|
[6] |
Zhu Y, et al.Inferring taxi status using GPS trajectories. Tech.Rep.MSR-TR-2011-144, Microsoft Research, Asia, March 2011.
|
[7] |
Lee J G, Han J, Li X. Trajectory outlier detection: Apartition and detect framework[C]//In: Proceedings of the 24th International Conference on Data Engineering. Washington:USA, 2008:140-149.
|
[8] |
Krumm J, Horvitz E.LOCADIO: Inferring motion and location from Wi-Fi signal strengths[C]// International Conference on Mobile and Ubiquitous Systems: NETWORKING and Services. Boston: USA, 2004:4-13.
|
[9] |
Yin J, Chai X, Yang Q.High-level goal recognition in a wireless LAN[C]// Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, 2004:578-584.
|
[10] |
Zheng Y.Trajectory data mining: An overview[J]. Acm Transactions on Intelligent Systems & Technology, 2015,6(3):1-41.
doi: 10.1145/2743025
|
[11] |
Gonzalez P A, Weinstein J S, Barbeau S J, et al.Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones[C]// 15th World Congress on Intelligent Transport Systems and ITS America's 2008 Annual Meeting. New York, USA, 2008:30267-30279
|
[12] |
肖艳丽,张振宇,杨文忠.移动数据的交通出行方式识别方法[J].智能系统学报,2014,9(5):536-543.
doi: 10.3969/j.issn.1673-4785.201404045
|
|
[ Xiao Y L, Zhang Z Y, Yang W Z.Research of the identification methods for transportation modes based on mobile data[J]. CAAI Transactions on Intelligent Systems, 2014,9(5):536-543. ]
doi: 10.3969/j.issn.1673-4785.201404045
|
[13] |
Assemi B, Safi H, Mesbah M, et al.Developing and validating a statistical model for travel mode identification on smartphones[J]. IEEE Transactions on Intelligent Transportation Systems, 2016,17(7):1920-1931.
doi: 10.1109/TITS.2016.2516252
|
[14] |
Wang H, Calabrese F, Di Lorenzo G, et al.Transportation mode inference from anonymized and aggregated mobile phone call detail records[C]//13th International IEEE Conference on Intelligent Transportation Systems (ITSC),Funchal: Portugal, 2010:318-323.
|
[15] |
Zhu W, Ash J, Li Z, et al.Applying semi-supervised learning method for cellphone-based travel mode classification[C]//Smart Cities Conference (ISC2).London:UK, 2015:1-6.
|
[16] |
Su X, Caceres H, Tong H, et al.Online travel mode identification using smartphones with battery saving considerations[J]. IEEE Transactions on Intelligent Transportation Systems, 2016,99(1):1-14.
doi: 10.1109/TITS.2016.2530999
|
[17] |
Lin M, Hsu W J, Lee Z Q.Detecting modes of transport from unlabeled positioning sensor data[J]. Journal of Location Based Services, 2013,7(4):272-290.
doi: 10.1080/17489725.2013.819128
|
[18] |
Zheng Y, Li Q, Chen Y, et al.Understanding mobility based on GPS data[C]//Ubiquitous Computing, International Conference, UBICOMP, Seoul: Korea, 2008:312-321.
|
[19] |
Jahangiri A, Rakha H A.Applying machine learning techniques to transportation mode recognition using mobile phone sensor data[J]. IEEE transactions on intelligent transportation systems, 2015,16(5):2406-2417.
doi: 10.1109/TITS.2015.2405759
|
[20] |
Shafique M A, Hato E.A Comparison among various classification algorithms for travel mode detection using sensors' data collected by smartphones[C]//International Conference on Computers in Urban Planning and Urban Management, 2015.
|
[21] |
Reddy S, Mun M, Burke J, et al.Using mobile phones to determine transportation modes[J]. Acm Transactions on Sensor Networks, 2010,6(2):662-701.
doi: 10.1145/1689239.1689243
|
[22] |
Bolbol A, Cheng T, Tsapakis I, et al.Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification[J]. Computers Environment & Urban Systems, 2012,36(6):526-537.
doi: 10.1016/j.compenvurbsys.2012.06.001
|
[23] |
朱进,江南,胡斌.移动对象多种运动参数在轨迹分类的应用[J].地球信息科学学报,2016,18(2):143-150.
doi: 10.3724/SP.J.1047.2016.00143
|
|
[ Zhu J, Jiang N, Hu B.The application of multiple movement parameters in trajectory classification for moving objects[J]. Journal of Geo-information Science, 2016,18(2):143-150. ]
doi: 10.3724/SP.J.1047.2016.00143
|
[24] |
Lin M, Hsu W J.Mining GPS data for mobility patterns: A survey[J]. Pervasive & Mobile Computing, 2014,12(11):1-16.
doi: 10.1016/j.pmcj.2013.06.005
|
[25] |
Fradkin D, Mörchen F.Mining sequential patterns for classification[J]. Knowledge & Information Systems, 2015,45(3):731-749.
doi: 10.1007/s10115-014-0817-0
|
[26] |
Cheng H, Yan X, Han J, et al.Discriminative frequent pattern analysis for effective classification[C]//IEEE, International Conference on Data Engineering. Istanbul:Turkey, 2007:716-725.
|
[27] |
Cheng H, Yan X, Han J, et al.Direct discriminative pattern mining for effective classification[C]//2008 IEEE 24th International Conference on Data Engineering. Cancun: Mexico, 2008:169-178.
|
[28] |
Brinkhoff T.A framework for generating network-based moving objects[J]. Geoinformatica, 2002,6(2):153-180.
doi: 10.1023/A:1015231126594
|
[29] |
Lee J G, Han J, Li X, et al.Mining discriminative patterns for classifying trajectories on road networks[J]. IEEE Transactions on Knowledge & Data Engineering, 2011,23(5):713-726.
|
[30] |
Macdonald A, Ellen J.Multi-level resolution features for classification of transportation trajectories[C]//IEEE, International Conference on Machine Learning and Applications. Miami: FL, 2015:713-718.
|
[31] |
Endo Y, Toda H, Nishida K, et al.Deep feature extraction from trajectories for transportation mode estimation[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Auckland, New:Zealand, 2016:54-66.
|
[32] |
Sun Z, Ban X.Vehicle classification using GPS data[J]. Transportation Research Part C Emerging Technologies, 2013,37(3):102-117.
doi: 10.1016/j.trc.2013.09.015
|
[33] |
Stenneth L, Wolfson O, Yu P S, et al.Transportation mode detection using mobile phones and GIS information[C]//ACM Sigspatial International Symposium on Advances in Geographic Information Systems, Chicago: USA, 2011:54-63.
|
[34] |
Mun M Y, Seo Y W.Everyday mobility context classification using radio beacons[C]//Consumer Communications and NETWORKING Conference. IEEE, Las Vegas: NV, 2013:112-117.
|
[35] |
Hemminki S, Nurmi P, Tarkoma S.Accelerometer-based transportation mode detection on smartphones[C]//ACM Conference on Embedded Networked Sensor Systems.Rome: Italy, 2013:1-14.
|
[36] |
Boukhechba M, Bouzouane A, Bouchard B, et al.Online recognition of people's activities from raw GPS data: Semantic Trajectory Data Analysis[C]//Proceedings of the 8th ACM International Conference on Pervasive Technologies Related to Assistive Environments, 2015:575-578.
|