地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (3): 289-297.doi: 10.3724/SP.J.1047.2017.00289

• 地球信息科学理论与方法 •    下一篇

时空轨迹分类研究进展

赵竹珺(), 吉根林*()   

  1. 南京师范大学计算机科学与技术学院,南京 210023
  • 收稿日期:2016-08-09 修回日期:2016-12-05 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 吉根林 E-mail:493932879@qq.com;glji@njnu.edu.cn
  • 作者简介:

    作者简介:赵竹珺(1993- ),女,硕士生,研究方向为数据挖掘及其应用。E-mail:493932879@qq.com

  • 基金资助:
    国家自然科学基金项目“云计算环境下顾及用户关系的手机用户时空轨迹模式挖掘方法研究”(41471371)

Research Progress of Spatial-temporal Trajectory Classification

ZHAO Zhujun(), JI Genlin*()   

  1. School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China
  • Received:2016-08-09 Revised:2016-12-05 Online:2017-03-20 Published:2017-03-20
  • Contact: JI Genlin E-mail:493932879@qq.com;glji@njnu.edu.cn

摘要:

时空轨迹分类旨在为一条轨迹预测类别。时空轨迹分类在城市规划、个性化用户推荐等方面具有重要应用价值,其过程主要包括轨迹数据预处理、特征提取、建立分类器3个阶段。本文综述了近年来时空轨迹分类的研究进展,首先对时空轨迹分类的过程进行概述;然后将时空轨迹分类算法按特征提取的方式分为基于运动特征的轨迹分类算法、基于分类规则的轨迹分类算法和基于图像信号分析的轨迹分类算法3类,分别论述了这些算法的基本思想和优缺点;之后对现有的轨迹分类算法从数据来源、分类器、特征提取方式等方面进行对比分析;最后讨论现有的时空轨迹分类算法面临的挑战。

关键词: 时空轨迹分类, 时空轨迹挖掘, 时空数据挖掘

Abstract:

Spatial-temporal trajectory classification aims at predicting the category of a spatial-temporal trajectory. The classification of spatial-temporal trajectories plays an important role in urban planning, personalized user recommendation and so on. The process of trajectory classification includes three stages: trajectory preprocessing, feature extraction and classification. This paper reviews the recent research progress on trajectory classification. Firstly, we introduce the process of trajectory classification. Then, the trajectory classification algorithms are classified into three categories according to the method of feature extraction, including the trajectory classification algorithm based on motion feature, the trajectory classification algorithm based on classification rule and the trajectory classification algorithm based on image signal analysis. We also discuss the basic ideas, advantages and disadvantages of these algorithms. Thirdly, we compare the existing classification algorithms according to the sensors, feature extraction and classifiers used in these algorithms. Finally, we introduce the challenges of the existing trajectory classification algorithms.

Key words: spatial-temporal trajectory classification, spatial-temporal trajectory mining, spatial-temporal mining