地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (3): 382-389.doi: 10.3724/SP.J.1047.2017.00382
收稿日期:
2016-05-09
修回日期:
2016-09-22
出版日期:
2017-03-20
发布日期:
2017-03-20
通讯作者:
邓敏
E-mail:garlic_lee@csu.edu.cn;dengmin208@tom.com
作者简介:
作者简介:李佳霖(1992-),男,山东滨州人,硕士生,主要从事时空插值方法的研究工作。E-mail:
基金资助:
LI Jialin1(), FAN Zide1,2, DENG Min1,*(
)
Received:
2016-05-09
Revised:
2016-09-22
Online:
2017-03-20
Published:
2017-03-20
Contact:
DENG Min
E-mail:garlic_lee@csu.edu.cn;dengmin208@tom.com
摘要:
随着经济的快速发展,中国大部分地区空气污染状况日趋严重。空气污染物浓度插值对于进一步分析污染物时空分布情况,估计不同地区人群的暴露风险,制定防范措施具有重要作用。然而,现有空间插值方法由于没有充分考虑风向和风速因素对于污染物扩散的影响,故直接应用于空气污染物浓度插值,会对插值结果造成不利的影响。因此,本文提出一种顾及风向和风速的空气污染物浓度插值方法(Direction-Velocity IDW,DVIDW)。该方法首先根据离散气象站点处的风向和风速数据建立风场表面,然后利用风场数据计算空气污染物的扩散距离,根据扩散距离计算风场中待求点与采样点间的最短路径距离,最后由最短路径距离替代欧式距离进行反距离加权插值。本文分别采用2组实际空气污染物浓度数据,对DVIDW方法和其他常用的空间插值方法进行实验对比分析,验证了本文方法的可行性和优越性。
李佳霖, 樊子德, 邓敏. 顾及风向和风速的空气污染物浓度插值方法[J]. 地球信息科学学报, 2017, 19(3): 382-389.DOI:10.3724/SP.J.1047.2017.00382
LI Jialin,FAN Zide,DENG Min. A Method of Spatial Interpolation of Air Pollution Concentration Considering WindDirection and Speed[J]. Journal of Geo-information Science, 2017, 19(3): 382-389.DOI:10.3724/SP.J.1047.2017.00382
[1] | Yang H B, Zou X D, Wang H, et al.Study progress on PM2.5 in atmospheric environment[J]. Journal of Meteorology and Environment, 2012,28(3):77-82. |
[2] |
Guo X B, Wei H Y.Progress on the health effects of ambient PM2.5 pollution (in Chinese)[J]. Chin Sci Bull (Chin Ver). 2013,58:1171-1177.
doi: 10.1360/972013-147 |
[3] | Wang W, Tang D, Liu H, et al.Research on current pollution status and pollution characteristics of PM2.5 in China[J].Research of Environmental Sciences, 2000,13(1):17-18. |
[4] |
Li J, Heap A D.A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors[J]. Ecological Informatics. 2011,6:228-241.
doi: 10.1016/j.ecoinf.2010.12.003 |
[5] |
Gao M, Cao J, Seto E.A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi'an, China[J]. Environmental Pollution, 2015,199:56-65.
doi: 10.1016/j.envpol.2015.01.013 pmid: 25618367 |
[6] |
Shiode N., Shiode S.Street-level Spatial Interpolation Using Network-based IDW and Ordinary Kriging[J]. Transactions in GIS, 2011,15(4):457-477.
doi: 10.1111/j.1467-9671.2011.01278.x |
[7] |
Xu C D, Wang J F, Hu M G, Li Q X.Interpolation of missing temperature data at meteorological stations using P-BSHADE[J]. Climate, 2013,26:7452-7463.
doi: 10.1175/JCLI-D-12-00633.1 |
[8] |
Simolo C, Brunetti M, Maugeri M, et al.Improving estimation of missing values in daily precipitation series by a probability density function-preserving approach[J]. International Journal of Climatology, 2010,30:1564-1576.
doi: 10.1002/joc.1992 |
[9] |
Yi L, Yuan L W, Luo W, et al.V-Neighbor structure based spatial interpolation algorithm[J]. Geomatics and Information Science of Wuhan University, 2012,37(11):1285-1288.
doi: 10.1007/s11783-011-0280-z |
[10] | Li S, Shu H, Xu Z Q.Interpolation of temperature based on Spatial-temporal Kriging[J]. Geomatics and Information Science of Wuhan University, 2012,37(2):237-241. |
[11] | 彭思岭. 气象要素时空插值方法研究[D].长沙:中南大学,2010. |
[Peng S L.Developments of spatio-temporal interpolation methods for meteorological elements[D]. Changsha: Central South University, 2010. ] | |
[12] |
Stachelek J, Madden C J.Application of Inverse Path Distance Weighting for high-density spatial mapping of coastal water quality patterns[J]. International Journal of Geographical Information Science, 2015.
doi: 10.1080/13658816.2015.1018833 |
[13] |
Nalder I. A., Wein R. W. Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest[J]. Agricultural and forest meteorology, 1998,92(4):211-225.
doi: 10.1016/S0168-1923(98)00102-6 |
[14] |
Rivera-González L O, Zhang Z, Sánchez B N, et al. An assessment of air pollutant exposure methods in Mexico City, Mexico[J]. Journal of the Air & Waste Management Association, 2015:581-591.
doi: 10.1080/10962247.2015.1020974 pmid: 25947316 |
[15] |
Reyes J M, Serre M L.An LUR/BME framework to estimate PM2.5 explained by on road mobile and stationary sources[J]. Environmental Science & Technology, 2014,48(3):1736-1744.
doi: 10.1021/es4040528 pmid: 24387222 |
[16] |
Li L, Gong J, Zhou J.Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance[J]. Plos One, 2014,9(5):e96111.
doi: 10.1371/journal.pone.0096111 pmid: 24798197 |
[17] |
Blair R, Finkelstein N, Brook J.The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies[J]. Atmospheric Environment, 2007,41(16):3453-3464.
doi: 10.1016/j.atmosenv.2006.11.063 |
[18] |
Seaman N L.Meteorological modeling for air-quality assessments[J]. Atmospheric Environment, 2000,34(12):2231-2259.
doi: 10.1016/S1352-2310(99)00466-5 |
[19] |
Mesnard L D.Pollution models and inverse distance weighting: Some critical remarks[J]. Computers & Geosciences, 2013,52(1):459-469.
doi: 10.1016/j.cageo.2012.11.002 |
[20] | Dijkstra E W.A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959,1(1):269-271. |
[21] | Shepard D.A two-dimensional interpolation function for irregularly-spaced data[C]// Proceedings of the 1968 23rd ACM national conference. ACM, 1968: 517-52. |
[1] | 刘明杰, 徐卓揆, 郜允兵, 杨晶, 潘瑜春, 高秉博, 周艳兵, 周万鹏, 王凌. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020, 22(9): 1799-1813. |
[2] | 徐新良, 申志成, 李嘉豪, 王世宽. “海上丝绸之路”主要海域热带气旋时空分布特征及其危险性[J]. 地球信息科学学报, 2020, 22(12): 2383-2392. |
[3] | 张丽丽, 赵明伟, 赵娜, 岳天祥. 基于OCO-2卫星观测模拟高精度XCO2的空间分布[J]. 地球信息科学学报, 2018, 20(9): 1316-1326. |
[4] | 崔晓临, 程贇, 张露, 卫晓庆. 基于DEM修正的MODIS地表温度产品空间插值[J]. 地球信息科学学报, 2018, 20(12): 1768-1776. |
[5] | 王梦艺, 盛业华, 黄一昀, 吕海洋, 黄毅. 电磁地理环境监测数据空间插值方法[J]. 地球信息科学学报, 2017, 19(7): 872-879. |
[6] | 段家朕, 熊礼阳, 汤国安. 基岩露头采样密度对黄土古地形重建的影响[J]. 地球信息科学学报, 2016, 18(4): 461-468. |
[7] | 田斯妤, 黄晓霞, 李红旮, 汪昊, 李霞, 程鹏. 基于高斯曲线拟合-FFT方法的南海风场反演[J]. 地球信息科学学报, 2016, 18(11): 1544-1550. |
[8] | 张涛, 李宝林, 赵娜, 许丽丽. 结合TRMM数据的区域降水高精度曲面建模研究[J]. 地球信息科学学报, 2015, 17(8): 895-901. |
[9] | 董志南, 郑拴宁, 赵会兵, 董仁才. 基于空间插值的风场模拟方法比较分析[J]. 地球信息科学学报, 2015, 17(1): 37-44. |
[10] | 林冰仙, 周良辰, 闾国年. 虚拟钻孔控制的三维地质体模型构建方法[J]. 地球信息科学学报, 2013, 15(5): 672-679. |
[11] | 王晨亮, 岳天祥*, 范泽孟, 赵娜, 孙晓芳. 高精度曲面建模的中国气候降尺度模型[J]. 地球信息科学学报, 2012, 14(5): 599-610. |
[12] | 余万里, 李宝林. 稀疏格网样点的国家尺度土壤属性制图方法与应用[J]. 地球信息科学学报, 2012, 14(1): 49-54. |
[13] | 宋丽琼, 田原, 邬伦, 张晖. 日降水量的空间插值方法与应用对比分析——以深圳市为例[J]. 地球信息科学学报, 2008, 10(5): 566-572. |
[14] | 徐成东, 孔云峰, 仝文伟. 线性加权回归模型的高原山地区域降水空间插值研究[J]. 地球信息科学学报, 2008, 10(1): 14-19. |
|