地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (3): 390-397.doi: 10.3724/SP.J.1047.2017.00390
收稿日期:
2016-06-13
修回日期:
2016-08-26
出版日期:
2017-03-20
发布日期:
2017-03-20
通讯作者:
徐永明
E-mail:bailin@nuist.edu.cn;xym30@nuist.edu.cn
作者简介:
作者简介:白 琳(1991-),女,硕士生,研究方向为3S集成与气象应用。E-mail:
基金资助:
BAI Lin(), XU Yongming*(
), HE Miao, LI Ning
Received:
2016-06-13
Revised:
2016-08-26
Online:
2017-03-20
Published:
2017-03-20
Contact:
XU Yongming
E-mail:bailin@nuist.edu.cn;xym30@nuist.edu.cn
摘要:
近地表气温是城市热环境的重要表征,是改变和影响城区气候的重要因素。为获得空间上连续的近地表气温,本文以北京市为研究区,利用Landsat5/TM数据计算分别得到地表温度、归一化植被指数、改进的归一化差异水体指数、地表反照率、不透水面盖度,并结合气象站点气温和高程作为输入参数建立随机森林模型反演近地表气温。结果表明,随机森林反演的近地表气温平均绝对误差(MAE)为0.80 ℃,均方根误差(RMSE)为1.06 ℃,与传统多元线性气温回归方法相比,平均绝对误差(MAE)和均方根误差(RMSE)分别提高0.06 ℃和0.09 ℃。研究表明,利用随机森林模型反演近地表气温是可行的,并且具有一定的优越性。此外,对随机森林模型的输入参数进行重要性分析,地表温度对气温反演模型的影响最大,其次为高程。
白琳, 徐永明, 何苗, 李宁. 基于随机森林算法的近地表气温遥感反演研究[J]. 地球信息科学学报, 2017, 19(3): 390-397.DOI:10.3724/SP.J.1047.2017.00390
BAI Lin,XU Yongming,HE Miao,LI Ning. Remote Sensing Inversion of Near Surface Air Temperature Based on Random Forest[J]. Journal of Geo-information Science, 2017, 19(3): 390-397.DOI:10.3724/SP.J.1047.2017.00390
[1] |
Mao K B, Tang H J, Wang X F, et al.Near-surface air temperature estimation from ASTER data based on neural network algorithm[J]. International Journal of Remote Sensing, 2008,29(20):6021-6028.
doi: 10.1080/01431160802192160 |
[2] |
齐述华,王军邦,张庆员,等.利用MODIS遥感影像获取近地层气温的方法研究[J].遥感学报,2005,9(5):570-575.
doi: 10.3321/j.issn:1007-4619.2005.05.009 |
[Qi S H, Wang J B, Zhang Q Y, et al.Study on the estimation of air temperature from MODIS data[J]. Journal of Remote Sensing, 2005,9(5):570-575. ]
doi: 10.3321/j.issn:1007-4619.2005.05.009 |
|
[3] |
祝善友,张桂欣.近地表气温遥感反演研究进展[J].地球科学进展,2011,26(7):724-730.
doi: 10.11867/j.issn.1001-8166.2011.07.0724 |
[Zhu S Y, Zhang G X.Progress in near surface air temperature retrieved by remote sensing technonlgy[J]. Advances in Earth Science, 2011,26(7):724-730. ]
doi: 10.11867/j.issn.1001-8166.2011.07.0724 |
|
[4] | 曲培青,施润和,刘剋,等.基于遥感和BP人工神经网络的城乡气象站点划分分析[J].地球信息科学学报,2010,12(5):726-732. |
[Qu P Q, Shi R H, Liu K, et al.Discrimination of urban and rural meteorological stations based on remote sensing and BP artificial neural network[J]. Journal of Geo-Information Science, 2010,12(5):726-732. ] | |
[5] |
徐永明,覃志豪,万洪秀. 热红外遥感反演近地层气温的研究进展[J].国土资源遥感,2011(1):9-14.
doi: 10.6046/gtzyyg.2011.01.02 |
[Xu Y M, Qin Z H, Wan H X.Advances in the study of near surface air surface air temperature retrieval from thermal remote sensing[J]. Remote Sensing for Land & Resources, 2011,1:9-14. ]
doi: 10.6046/gtzyyg.2011.01.02 |
|
[6] |
Zhao C, Nan Z, Cheng G.Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China[J]. Ecological Modelling, 2005,189(s1-2):209-220.
doi: 10.1016/j.ecolmodel.2005.03.016 |
[7] |
Cresswell M P, Morse A P, Thomson M C,et al.Estimating surface air temperatures from Meteosat land surface temperatures using an empirical solar zenith angle model[J]. International Journal of Remote Sensing,1999,20(6):1125-1132.
doi: 10.1080/014311699212885 |
[8] |
曲培青,施润和,刘朝顺,等. 基于MODIS地表参数产品和地理数据的近地层气温估算方法评价——以安徽省为例[J].国土资源遥感,2011(4):78-82.
doi: 10.6046/gtzyyg.2011.04.15 |
[Qu P Q, Shi R H, Liu C S, et al.The evaluation of MODIS data and geographic data for estimating near surface air temperature: A case of Anhui Pravince[J]. Remote Sensing for Land & Resources, 2011,4:78-82. ]
doi: 10.6046/gtzyyg.2011.04.15 |
|
[9] |
Prihodko L, Goward S N.Estimation of air temperature from remotely sensed surface observations[J]. Remote Sensing of Environment, 1997,60(3):335-346.
doi: 10.1016/S0034-4257(96)00216-7 |
[10] |
Vancutsem C, Ceccato P, Dinku T, et al.Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa[J]. Remote Sensing of Environment, 2010,4(2):449-465.
doi: 10.1016/j.rse.2009.10.002 |
[11] |
Stisen S, Sandholt I, Norgaard A, et al.Estimation of diurnal air temperature using MSG SEVIRI data in West Africa[J]. Remote Sensing of Environment, 2007,10(2):262-274.
doi: 10.1016/j.rse.2007.02.025 |
[12] |
徐永明,覃志豪,沈艳.基于MODIS数据的长江三角洲地区近地表气温遥感反演[J].农业工程学报,2011,27(9):63-68.
doi: 10.3969/j.issn.1002-6819.2011.09.013 |
[Xu Y M, Qin Z H, Shen Y.Estimation of near surface air temperature from MODIS data in the Yangtze River Delta[J]. Transactions of the CSAE, 2011,27(9):63-68. ]
doi: 10.3969/j.issn.1002-6819.2011.09.013 |
|
[13] |
Sun Y, Wang J F, Zhang R H, et al.Air temperature retrieval from remote sensing data based on thermodynamics[J]. Theoretical & Applied Climatology, 2005,80(1):37-48.
doi: 10.1007/s00704-004-0079-y |
[14] |
Breiman L. Random Forests[J]. Machine Learning,2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[15] |
方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-38.
doi: 10.3969/j.issn.1007-3116.2011.03.006 |
[Fang K N, Wu J B, Zhu J P, et al.A review of technologies on random forests[J]. Statistics&Information Forum, 2011,26(3):32-38. ]
doi: 10.3969/j.issn.1007-3116.2011.03.006 |
|
[16] |
张雷,王琳琳,张旭东,等.随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J].生态学报,2014,34(3):650-659.
doi: 10.5846/stxb201306031292 |
[Zhang L, Wang L L, Zhang X D, et al.The basic principle of random forest and its applications in ecology: A case study of Pinus yunnanensis[J]. Acta Ecologica Sinica, 2014,34(3):650-659. ]
doi: 10.5846/stxb201306031292 |
|
[17] |
田绍鸿,张显峰.采用随机森林法的天绘数据干旱区城市土地覆盖分类[J].国土资源遥感,2016,28(1):43-49.
doi: 10.6046/gtzyyg.2016.01.07 |
[Tian S H, Zhang X F.Random forest classification of land cover information of urban areas in arid regions based on TH-1 data[J]. Remote Sensing for Land and Resources, 2016,28(1):43-49. ]
doi: 10.6046/gtzyyg.2016.01.07 |
|
[18] |
Gleason C J, Im J.Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012,125(125):80-91.
doi: 10.1016/j.rse.2012.07.006 |
[19] |
Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research, 2003,108(D22):2015-2023.
doi: 10.1029/2003JD003480 |
[20] |
邹春城,张友水,黄欢欢.福州市城市不透水面景观指数与城市热环境关系分析[J].地球信息科学学报,2014,16(3):490-498.
doi: 10.3724/SP.J.1047.2014.00490 |
[Zou C C, Zhang Y S, Huang H H.Impacts of impervious surface area and landscape metrics on urban heat environment in Fuzhou City, China[J]. Journal of Geo-InformationScience, 2014,16(3):490-498. ]
doi: 10.3724/SP.J.1047.2014.00490 |
|
[21] | Chester L Arnold Jr, C James Gibbons. Impervious surface coverage: The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258. |
[22] |
Ridd M K.Exploring a V-I-S (Vegetation-Impervious Surface-Soil) model for urban ecosystem analysis through remote sensing[J]. International Journal of Remote Sensing, 1995,16(12):2165-2185.
doi: 10.1080/01431169508954549 |
[23] |
徐永明,刘勇洪.基于TM影像的北京市热环境及其与不透水面的关系研究[J].生态环境学报,2013,22(4):639-643.
doi: 10.3969/j.issn.1674-5906.2013.04.015 |
[Xu Y M, Liu Y H.Study on the thermal environment and its relationship with impervious surface in Beijing city using TM image[J]. Ecology and Environmental Sciences, 2013,22(4):639-643. ]
doi: 10.3969/j.issn.1674-5906.2013.04.015 |
|
[24] | Rouse J W, Haas R H, Schell J A,et al.Monitoring vegetation systems in the great plains with Erts[A]. Third Earth Resources Technology Satellite-1 Symposium[C]. 1974:309-317. |
[25] |
徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.
doi: 10.3321/j.issn:1007-4619.2005.05.012 |
[Xu H Q.A study on information extraction of water body with the modified normalized difference water index(MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):589-595. ]
doi: 10.3321/j.issn:1007-4619.2005.05.012 |
|
[26] |
阿布都瓦斯提·吾拉木,秦其明.基于辐射模拟反演ETM+数据宽波段反照率[J].北京大学学报:自然科学版,2007,43(4):474-483.
doi: 10.3321/j.issn:0479-8023.2007.04.007 |
[Ghulam A, Qin Q M.Calculation of ETM+ broadband albedos by radiative simulations[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007,43(4):474-483. ]
doi: 10.3321/j.issn:0479-8023.2007.04.007 |
[1] | 帅艳民, 马现伟, 曲歌, 邵聪颖, 刘涛, 刘守民, 黄华兵, 谷玲霄, 拉提帕·吐尔汗江, 梁继, 李玲. 协同多时相波谱特征的不透水面信息级联提取[J]. 地球信息科学学报, 2021, 23(1): 171-186. |
[2] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[3] | 赵鹏军, 曹毓书. 基于多源地理大数据与机器学习的地铁乘客出行目的识别方法[J]. 地球信息科学学报, 2020, 22(9): 1753-1765. |
[4] | 王艳杰, 王卷乐, 魏海硕, Altansukh Ochir, Davaadorj Davaasuren, Sonomdagva Chonokhuu. 基于稀疏样点的蒙古国产草量估算方法研究[J]. 地球信息科学学报, 2020, 22(9): 1814-1822. |
[5] | 陈辉, 厉青, 王中挺, 马鹏飞, 李营, 赵爱梅. 一种基于FY3D/MERSI2的AOD遥感反演方法[J]. 地球信息科学学报, 2020, 22(9): 1887-1896. |
[6] | 蒲东川, 王桂周, 张兆明, 牛雪峰, 何国金, 龙腾飞, 尹然宇, 江威, 孙嘉悦. 基于独立成分分析和随机森林算法的城镇用地提取研究[J]. 地球信息科学学报, 2020, 22(8): 1597-1606. |
[7] | 朱守杰, 杜世宏, 李军, 商硕硕, 杜守基. 融合多源空间数据的城镇人口分布估算[J]. 地球信息科学学报, 2020, 22(8): 1607-1616. |
[8] | 李婉, 牛陆, 陈虹, 吴骅. 基于随机森林算法的地表温度鲁棒降尺度方法[J]. 地球信息科学学报, 2020, 22(8): 1666-1678. |
[9] | 毛亚萍, 房世峰. 基于机器学习的参考作物蒸散量估算研究[J]. 地球信息科学学报, 2020, 22(8): 1692-1701. |
[10] | 阿依尼格尔·亚力坤, 买买提艾力·买买提依明, 刘素红, 杨帆, 何清, 刘永强. 新疆沙漠地区地表宽波段比辐射率遥感估算[J]. 地球信息科学学报, 2020, 22(8): 1743-1751. |
[11] | 邬明权, 王标才, 牛铮, 黄文江. 工程项目地球大数据监测与分析理论框架及研究进展[J]. 地球信息科学学报, 2020, 22(7): 1408-1423. |
[12] | 赵青松, 兰安军, 范泽孟, 杨青. 贵州省不同地貌形态类型土壤侵蚀强度变化的定量分析[J]. 地球信息科学学报, 2020, 22(7): 1555-1566. |
[13] | 龚围, 李丽, 柳钦火, 辛晓洲, 彭志晴, 邬明权, 牛铮, 田海峰. “一带一路”区域水电站工程生态环境影响遥感监测[J]. 地球信息科学学报, 2020, 22(7): 1424-1436. |
[14] | 朱惠, 张清凌, 张珊. 1992—2017年基于夜光遥感的中亚社会经济发展时空特征分析[J]. 地球信息科学学报, 2020, 22(7): 1449-1462. |
[15] | 叶虎平, 廖小罕, 何贤强, 岳焕印. 斯里兰卡近海海洋生态环境变化遥感监测分析[J]. 地球信息科学学报, 2020, 22(7): 1463-1475. |
|